|
--- |
|
language: |
|
- ru |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
- named-entity-recognition |
|
- russian |
|
- ner |
|
datasets: |
|
- RCC-MSU/collection3 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
thumbnail: Sberbank RuBERT-base fintuned on Collection3 dataset |
|
base_model: sberbank-ai/ruBert-base |
|
model-index: |
|
- name: sberbank-rubert-base-collection3 |
|
results: |
|
- task: |
|
type: token-classification |
|
name: Token Classification |
|
dataset: |
|
name: RCC-MSU/collection3 |
|
type: named-entity-recognition |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- type: precision |
|
value: 0.938019472809309 |
|
name: Precision |
|
- type: recall |
|
value: 0.9594364828758805 |
|
name: Recall |
|
- type: f1 |
|
value: 0.9486071085494716 |
|
name: F1 |
|
- type: accuracy |
|
value: 0.9860420020488805 |
|
name: Accuracy |
|
- task: |
|
type: token-classification |
|
name: Token Classification |
|
dataset: |
|
name: RCC-MSU/collection3 |
|
type: named-entity-recognition |
|
config: default |
|
split: test |
|
args: default |
|
metrics: |
|
- type: precision |
|
value: 0.9419896321895829 |
|
name: Precision |
|
- type: recall |
|
value: 0.9537615596100975 |
|
name: Recall |
|
- type: f1 |
|
value: 0.947839046199702 |
|
name: F1 |
|
- type: accuracy |
|
value: 0.9847255179564897 |
|
name: Accuracy |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# sberbank-rubert-base-collection3 |
|
|
|
This model is a fine-tuned version of [sberbank-ai/ruBert-base](https://huggingface.co/sberbank-ai/ruBert-base) on the collection3 dataset. |
|
It achieves the following results on the validation set: |
|
- Loss: 0.0772 |
|
- Precision: 0.9380 |
|
- Recall: 0.9594 |
|
- F1: 0.9486 |
|
- Accuracy: 0.9860 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 0.1 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0899 | 1.0 | 2326 | 0.0760 | 0.9040 | 0.9330 | 0.9182 | 0.9787 | |
|
| 0.0522 | 2.0 | 4652 | 0.0680 | 0.9330 | 0.9339 | 0.9335 | 0.9821 | |
|
| 0.0259 | 3.0 | 6978 | 0.0745 | 0.9308 | 0.9512 | 0.9409 | 0.9838 | |
|
| 0.0114 | 4.0 | 9304 | 0.0731 | 0.9372 | 0.9573 | 0.9471 | 0.9857 | |
|
| 0.0027 | 5.0 | 11630 | 0.0772 | 0.9380 | 0.9594 | 0.9486 | 0.9860 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 1.7.0 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.13.2 |