File size: 3,157 Bytes
f1cc377
d291600
 
f1cc377
 
 
324c3b0
 
 
f1cc377
324c3b0
f1cc377
 
 
 
 
d291600
 
f1cc377
 
 
 
 
d291600
f1cc377
324c3b0
 
f1cc377
 
 
 
d291600
f1cc377
d291600
 
f1cc377
d291600
 
f1cc377
d291600
 
f1cc377
d291600
324c3b0
 
d291600
324c3b0
 
 
 
 
 
 
d291600
324c3b0
d291600
 
324c3b0
d291600
 
324c3b0
d291600
 
324c3b0
d291600
f1cc377
 
 
 
 
 
 
 
e743730
f1cc377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
324c3b0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
language:
- ru
license: apache-2.0
tags:
- generated_from_trainer
- named-entity-recognition
- russian
- ner
datasets:
- RCC-MSU/collection3
metrics:
- precision
- recall
- f1
- accuracy
thumbnail: Sberbank RuBERT-base fintuned on Collection3 dataset
base_model: sberbank-ai/ruBert-base
model-index:
- name: sberbank-rubert-base-collection3
  results:
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: RCC-MSU/collection3
      type: named-entity-recognition
      config: default
      split: validation
      args: default
    metrics:
    - type: precision
      value: 0.938019472809309
      name: Precision
    - type: recall
      value: 0.9594364828758805
      name: Recall
    - type: f1
      value: 0.9486071085494716
      name: F1
    - type: accuracy
      value: 0.9860420020488805
      name: Accuracy
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: RCC-MSU/collection3
      type: named-entity-recognition
      config: default
      split: test
      args: default
    metrics:
    - type: precision
      value: 0.9419896321895829
      name: Precision
    - type: recall
      value: 0.9537615596100975
      name: Recall
    - type: f1
      value: 0.947839046199702
      name: F1
    - type: accuracy
      value: 0.9847255179564897
      name: Accuracy
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# sberbank-rubert-base-collection3

This model is a fine-tuned version of [sberbank-ai/ruBert-base](https://huggingface.co/sberbank-ai/ruBert-base) on the collection3 dataset.
It achieves the following results on the validation set:
- Loss: 0.0772
- Precision: 0.9380
- Recall: 0.9594
- F1: 0.9486
- Accuracy: 0.9860

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0899        | 1.0   | 2326  | 0.0760          | 0.9040    | 0.9330 | 0.9182 | 0.9787   |
| 0.0522        | 2.0   | 4652  | 0.0680          | 0.9330    | 0.9339 | 0.9335 | 0.9821   |
| 0.0259        | 3.0   | 6978  | 0.0745          | 0.9308    | 0.9512 | 0.9409 | 0.9838   |
| 0.0114        | 4.0   | 9304  | 0.0731          | 0.9372    | 0.9573 | 0.9471 | 0.9857   |
| 0.0027        | 5.0   | 11630 | 0.0772          | 0.9380    | 0.9594 | 0.9486 | 0.9860   |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.7.0
- Datasets 2.10.1
- Tokenizers 0.13.2