File size: 1,414 Bytes
de8fafd
 
66b7ffa
de8fafd
dffbe5f
24fcff5
dffbe5f
 
 
2a4b8c9
dffbe5f
d551111
7ca304f
 
 
 
 
 
dffbe5f
 
 
 
11d40d7
dffbe5f
 
 
 
 
 
 
d551111
dffbe5f
fc49662
dffbe5f
fc49662
dffbe5f
 
 
 
 
 
 
d551111
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
---
license: apache-2.0
pipeline_tag: image-text-to-text
---

moondream2 is a small vision language model designed to run efficiently on edge devices. Check out the [GitHub repository](https://github.com/vikhyat/moondream) for details, or try it out on the [Hugging Face Space](https://huggingface.co/spaces/vikhyatk/moondream2)!

**Benchmarks**

| Release | VQAv2 | GQA | TextVQA | TallyQA (simple) | TallyQA (full) |
| --- | --- | --- | --- | --- | --- |
| **2024-05-20** (latest) | 79.4 | 63.1 | 57.2 | 82.1 | 76.6 |
| 2024-05-08 | 79.0 | 62.7 | 53.1 | 81.6 | 76.1 |
| 2024-04-02 | 77.7 | 61.7 | 49.7 | 80.1 | 74.2 |
| 2024-03-13 | 76.8 | 60.6 | 46.4 | 79.6 | 73.3 |
| 2024-03-06 | 75.4 | 59.8 | 43.1 | 79.5 | 73.2 |
| 2024-03-04 | 74.2 | 58.5 | 36.4 | - | - |


**Usage**

```bash
pip install transformers einops
```

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image

model_id = "vikhyatk/moondream2"
revision = "2024-05-20"
model = AutoModelForCausalLM.from_pretrained(
    model_id, trust_remote_code=True, revision=revision
)
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)

image = Image.open('<IMAGE_PATH>')
enc_image = model.encode_image(image)
print(model.answer_question(enc_image, "Describe this image.", tokenizer))
```

The model is updated regularly, so we recommend pinning the model version to a
specific release as shown above.