File size: 17,685 Bytes
fd3583e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 |
#!/usr/bin/env python
# Copyright (c) Meta Platforms, Inc. and affiliates
# All rights reserved.
#
# This source code is licensed under the license found in the
# MIT_LICENSE file in the root directory of this source tree.
import os
import pathlib
import tempfile
from pydub import AudioSegment, silence
import gradio as gr
import torch
import torchaudio
from fairseq2.assets import InProcAssetMetadataProvider, asset_store
from fairseq2.data import Collater, SequenceData, VocabularyInfo
from fairseq2.data.audio import (
AudioDecoder,
WaveformToFbankConverter,
WaveformToFbankOutput,
)
from seamless_communication.inference import SequenceGeneratorOptions
from fairseq2.generation import NGramRepeatBlockProcessor
from fairseq2.memory import MemoryBlock
from fairseq2.typing import DataType, Device
from huggingface_hub import snapshot_download
from seamless_communication.inference import BatchedSpeechOutput, Translator, SequenceGeneratorOptions
from seamless_communication.models.generator.loader import load_pretssel_vocoder_model
from seamless_communication.models.unity import (
UnitTokenizer,
load_gcmvn_stats,
load_unity_text_tokenizer,
load_unity_unit_tokenizer,
)
from torch.nn import Module
from seamless_communication.cli.expressivity.evaluate.pretssel_inference_helper import PretsselGenerator
from utils import LANGUAGE_CODE_TO_NAME
DESCRIPTION = """\
# Seamless Expressive
[SeamlessExpressive](https://github.com/facebookresearch/seamless_communication) is a speech-to-speech translation model that captures certain underexplored aspects of prosody such as speech rate and pauses, while preserving the style of one's voice and high content translation quality.
"""
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1" and torch.cuda.is_available()
CHECKPOINTS_PATH = pathlib.Path(os.getenv("CHECKPOINTS_PATH", "/workspace/seamless_communication/demo/expressive/models"))
if not CHECKPOINTS_PATH.exists():
snapshot_download(repo_id="facebook/seamless-expressive", repo_type="model", local_dir=CHECKPOINTS_PATH)
snapshot_download(repo_id="facebook/seamless-m4t-v2-large", repo_type="model", local_dir=CHECKPOINTS_PATH)
# Ensure that we do not have any other environment resolvers and always return
# "demo" for demo purposes.
asset_store.env_resolvers.clear()
asset_store.env_resolvers.append(lambda: "demo")
# Construct an `InProcAssetMetadataProvider` with environment-specific metadata
# that just overrides the regular metadata for "demo" environment. Note the "@demo" suffix.
demo_metadata = [
{
"name": "seamless_expressivity@demo",
"checkpoint": f"file://{CHECKPOINTS_PATH}/m2m_expressive_unity.pt",
"char_tokenizer": f"file://{CHECKPOINTS_PATH}/spm_char_lang38_tc.model",
},
{
"name": "vocoder_pretssel@demo",
"checkpoint": f"file://{CHECKPOINTS_PATH}/pretssel_melhifigan_wm-final.pt",
},
{
"name": "seamlessM4T_v2_large@demo",
"checkpoint": f"file://{CHECKPOINTS_PATH}/seamlessM4T_v2_large.pt",
"char_tokenizer": f"file://{CHECKPOINTS_PATH}/spm_char_lang38_tc.model",
},
]
asset_store.metadata_providers.append(InProcAssetMetadataProvider(demo_metadata))
LANGUAGE_NAME_TO_CODE = {v: k for k, v in LANGUAGE_CODE_TO_NAME.items()}
if torch.cuda.is_available():
device = torch.device("cuda:0")
dtype = torch.float16
else:
device = torch.device("cpu")
dtype = torch.float32
MODEL_NAME = "seamless_expressivity"
VOCODER_NAME = "vocoder_pretssel"
# used for ASR for toxicity
m4t_translator = Translator(
model_name_or_card="seamlessM4T_v2_large",
vocoder_name_or_card=None,
device=device,
dtype=dtype,
)
unit_tokenizer = load_unity_unit_tokenizer(MODEL_NAME)
_gcmvn_mean, _gcmvn_std = load_gcmvn_stats(VOCODER_NAME)
gcmvn_mean = torch.tensor(_gcmvn_mean, device=device, dtype=dtype)
gcmvn_std = torch.tensor(_gcmvn_std, device=device, dtype=dtype)
translator = Translator(
MODEL_NAME,
vocoder_name_or_card=None,
device=device,
dtype=dtype,
apply_mintox=False,
)
text_generation_opts = SequenceGeneratorOptions(
beam_size=5,
unk_penalty=torch.inf,
soft_max_seq_len=(0, 200),
step_processor=NGramRepeatBlockProcessor(
ngram_size=10,
),
)
m4t_text_generation_opts = SequenceGeneratorOptions(
beam_size=5,
unk_penalty=torch.inf,
soft_max_seq_len=(1, 200),
step_processor=NGramRepeatBlockProcessor(
ngram_size=10,
),
)
pretssel_generator = PretsselGenerator(
VOCODER_NAME,
vocab_info=unit_tokenizer.vocab_info,
device=device,
dtype=dtype,
)
decode_audio = AudioDecoder(dtype=torch.float32, device=device)
convert_to_fbank = WaveformToFbankConverter(
num_mel_bins=80,
waveform_scale=2**15,
channel_last=True,
standardize=False,
device=device,
dtype=dtype,
)
def normalize_fbank(data: WaveformToFbankOutput) -> WaveformToFbankOutput:
fbank = data["fbank"]
std, mean = torch.std_mean(fbank, dim=0)
data["fbank"] = fbank.subtract(mean).divide(std)
data["gcmvn_fbank"] = fbank.subtract(gcmvn_mean).divide(gcmvn_std)
return data
collate = Collater(pad_value=0, pad_to_multiple=1)
AUDIO_SAMPLE_RATE = 16000
MAX_INPUT_AUDIO_LENGTH = 10 # in seconds
from pydub import AudioSegment
def adjust_audio_duration(input_audio_path, output_audio_path):
input_audio = AudioSegment.from_file(input_audio_path)
output_audio = AudioSegment.from_file(output_audio_path)
input_duration = len(input_audio)
output_duration = len(output_audio)
# Calcul de la différence de durée
duration_diff = input_duration - output_duration
# Ajout de silence à la fin si l'audio de sortie est plus court
if duration_diff > 0:
print("Duration diff : ",duration_diff)
silence = AudioSegment.silent(duration=duration_diff)
output_audio += silence
# Enregistrer l'audio ajusté
output_audio.export(output_audio_path, format='wav')
return output_audio_path
import yt_dlp
def dowloadYoutubeAudio(url):
print("Téléchargement de l'audio YouTube en cours...")
ydl_opts = {
'format': 'm4a/bestaudio/best',
'outtmpl': os.getcwd() + "/audio", # Mise à jour du chemin de sortie
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav', # Utilisation du format WAV
}]
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
error_code = ydl.download([url])
if error_code == 0:
print("Sauvegarde du fichier audio...")
print("download_finished : ", os.getcwd() + "/audio.wav")
else:
print("error : Échec du téléchargement...")
return os.getcwd() + "/audio.wav"
def split_audio(input_audio_path):
print("Start Split Audio")
audio = AudioSegment.from_file(input_audio_path)
silence_thresh = -20 # Seuil de silence
min_silence_len = 300 # Durée minimale de silence en ms
chunks = []
current_chunk = AudioSegment.silent(duration=0)
for ms in range(0, len(audio), 10): # Incrément de 10 ms
segment = audio[ms:ms + 10]
current_chunk += segment
if len(current_chunk) >= 8000: # Si la durée actuelle dépasse 8 secondes
# Vérifier s'il y a un silence
if silence.detect_silence(current_chunk[-min_silence_len:], min_silence_len=min_silence_len, silence_thresh=silence_thresh):
# Couper au silence
print("Silence détecté, découpage du segment")
chunks.append(current_chunk)
current_chunk = AudioSegment.silent(duration=0)
if len(current_chunk) >= 8900: # Si la durée dépasse 9,89 secondes
print("Durée maximale atteinte, découpage du segment")
chunks.append(current_chunk)
current_chunk = AudioSegment.silent(duration=0)
# Ajouter le dernier segment s'il n'est pas vide
if len(current_chunk) > 0:
chunks.append(current_chunk)
print('Nombre de segments valides:', len(chunks))
return chunks
def remove_prosody_tokens_from_text(text):
# filter out prosody tokens, there is only emphasis '*', and pause '='
text = text.replace("*", "").replace("=", "")
text = " ".join(text.split())
return text
import torchaudio
AUDIO_SAMPLE_RATE = 16000 # Taux d'échantillonnage standard
def preprocess_audio(input_audio_path: str):
print("preprocess_audio start")
print("Audio Path :", input_audio_path)
audio_segments = split_audio(input_audio_path)
temp_folder = os.path.join(os.getcwd(), "path_to_temp_folder")
os.makedirs(temp_folder, exist_ok=True)
segment_paths = []
for i, segment in enumerate(audio_segments):
segment_path = os.path.join(temp_folder, f"segment_{i}.wav")
segment_audio = segment.get_array_of_samples()
segment_tensor = torch.tensor(segment_audio).unsqueeze(0).float()
# Rééchantillonnage
segment_tensor = torchaudio.functional.resample(segment_tensor, orig_freq=segment.frame_rate, new_freq=AUDIO_SAMPLE_RATE)
torchaudio.save(segment_path, segment_tensor, sample_rate=AUDIO_SAMPLE_RATE)
segment_paths.append(segment_path)
print("path for :", segment_path)
return segment_paths
import os
import torchaudio
# Constante pour le taux d'échantillonnage
AUDIO_SAMPLE_RATE = 16000
def preprocess_audio22(input_audio_path: str):
print("preprocess_audio start")
print("Audio Path :", input_audio_path)
# Appeler split_audio et obtenir les segments
audio_segments = split_audio(input_audio_path)
# Créer un dossier temporaire pour stocker les segments
temp_folder = os.path.join(os.getcwd(), "path_to_temp_folder")
os.makedirs(temp_folder, exist_ok=True)
segment_paths = []
for i, segment in enumerate(audio_segments):
# Exporter chaque segment dans un fichier temporaire
temp_segment_path = os.path.join(temp_folder, f"temp_segment_{i}.wav")
segment.export(temp_segment_path, format="wav")
# Charger et traiter le segment audio
arr, org_sr = torchaudio.load(temp_segment_path)
new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE)
# Enregistrer le segment traité
segment_path = os.path.join(temp_folder, f"segment_{i}.wav")
torchaudio.save(segment_path, new_arr, sample_rate=AUDIO_SAMPLE_RATE)
# Ajouter le chemin du segment traité à la liste
segment_paths.append(segment_path)
print("Path for :", segment_path)
return segment_paths
def preprocess_audio222(input_audio_path: str):
# Appeler split_audio et obtenir les segments
print("preprocess_audio start")
print("Audio Path :",input_audio_path)
audio_segments = split_audio(input_audio_path)
temp_folder = os.getcwd()+"/path_to_temp_folder"
os.makedirs(temp_folder, exist_ok=True)
segment_paths = []
for i, segment in enumerate(audio_segments):
segment_path = os.path.join(temp_folder, f"segment_{i}.wav")
segment.export(segment_path, format="wav")
segment_paths.append(segment_path)
print("path for : ",segment_path)
return segment_paths
def process_segment(segment_path, source_language_code, target_language_code):
# preprocess_audio(segment_path) - cette ligne peut ne pas être nécessaire si le segment est déjà prétraité
with pathlib.Path(segment_path).open("rb") as fb:
block = MemoryBlock(fb.read())
example = decode_audio(block)
example = convert_to_fbank(example)
example = normalize_fbank(example)
example = collate(example)
# Transcription pour mintox
source_sentences, _ = m4t_translator.predict(
input=example["fbank"],
task_str="S2TT",
tgt_lang=source_language_code,
text_generation_opts=m4t_text_generation_opts,
)
source_text = str(source_sentences[0])
prosody_encoder_input = example["gcmvn_fbank"]
text_output, unit_output = translator.predict(
example["fbank"],
"S2ST",
tgt_lang=target_language_code,
src_lang=source_language_code,
text_generation_opts=text_generation_opts,
unit_generation_ngram_filtering=False,
duration_factor=1.0,
prosody_encoder_input=prosody_encoder_input,
src_text=source_text,
)
speech_output = pretssel_generator.predict(
unit_output.units,
tgt_lang=target_language_code,
prosody_encoder_input=prosody_encoder_input,
)
# Chemin pour enregistrer l'audio du segment
segment_output_audio_path = os.path.join(os.getcwd(), "result", f"segment_audio_{os.path.basename(segment_path)}")
os.makedirs(os.path.dirname(segment_output_audio_path), exist_ok=True)
# Enregistrer l'audio du segment
torchaudio.save(
segment_output_audio_path,
speech_output.audio_wavs[0][0].to(torch.float32).cpu(),
sample_rate=speech_output.sample_rate,
)
segment_output_audio_path = adjust_audio_duration(segment_path, segment_output_audio_path)
text_out = remove_prosody_tokens_from_text(str(text_output[0]))
print("Audio ici : ",segment_output_audio_path)
return segment_output_audio_path, text_out
#---------------------------_#
from typing import Tuple
def run2(
input_audio_path: str,
source_language: str,
target_language: str,
) -> Tuple[str, str]:
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
preprocess_audio(input_audio_path)
with pathlib.Path(input_audio_path).open("rb") as fb:
block = MemoryBlock(fb.read())
example = decode_audio(block)
example = convert_to_fbank(example)
example = normalize_fbank(example)
example = collate(example)
# get transcription for mintox
source_sentences, _ = m4t_translator.predict(
input=example["fbank"],
task_str="S2TT", # get source text
tgt_lang=source_language_code,
text_generation_opts=m4t_text_generation_opts,
)
source_text = str(source_sentences[0])
prosody_encoder_input = example["gcmvn_fbank"]
text_output, unit_output = translator.predict(
example["fbank"],
"S2ST",
tgt_lang=target_language_code,
src_lang=source_language_code,
text_generation_opts=text_generation_opts,
unit_generation_ngram_filtering=False,
duration_factor=1.0,
prosody_encoder_input=prosody_encoder_input,
src_text=source_text, # for mintox check
)
speech_output = pretssel_generator.predict(
unit_output.units,
tgt_lang=target_language_code,
prosody_encoder_input=prosody_encoder_input,
)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
torchaudio.save(
f.name,
speech_output.audio_wavs[0][0].to(torch.float32).cpu(),
sample_rate=speech_output.sample_rate,
)
text_out = remove_prosody_tokens_from_text(str(text_output[0]))
return f.name, text_out
#---------------------------------------------------------_#
#----------------------------------------------------------#
#----------------------------------------------__#------
#-----------------------#
def run(input_audio_path: str, source_language: str, target_language: str) -> tuple[str, str]:
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
segment_paths = preprocess_audio22(input_audio_path)
print("preprocess_audio end")
final_text = ""
final_audio = AudioSegment.silent(duration=0)
for segment_path in segment_paths:
segment_audio_path, segment_text = process_segment(segment_path, source_language_code, target_language_code)
final_text += segment_text + " "
segment_audio = AudioSegment.from_file(segment_audio_path)
final_audio += segment_audio
output_audio_path = os.path.join(os.getcwd(), "result", "audio.wav")
os.makedirs(os.path.dirname(output_audio_path), exist_ok=True)
final_audio.export(output_audio_path, format="wav")
text_out = remove_prosody_tokens_from_text(final_text.strip())
return output_audio_path, text_out
TARGET_LANGUAGE_NAMES = [
"English",
"French",
"German",
"Spanish",
]
from flask import Flask, request, jsonify
import torch
import torchaudio
app = Flask(__name__)
# Fonction run adaptée pour Flask
@app.route('/translate', methods=['POST'])
def translate():
# Récupérer les données de la requête
data = request.json
input_audio_path = data['input_audio_path']
source_language = data['source_language']
target_language = data['target_language']
# Exécution de la fonction de traduction
output_audio_path, output_text = run(input_audio_path, source_language, target_language)
# Retourner la réponse
return jsonify({
'output_audio_path': output_audio_path,
'output_text': output_text
})
import os
url = "https://youtu.be/qb_tHWGJOp8?si=10qB2JApy0q3XY76"
input_audio_path = dowloadYoutubeAudio(url)
#input_audio_path = os.getcwd()+"/au1min_Vocals_finale.wav"
source_language = "French"
target_language = "English"
print("Audio à traiter : ",input_audio_path)
output_audio_path, output_text = run(input_audio_path, source_language, target_language)
print("output_audio_path : ",output_audio_path)
|