File size: 13,981 Bytes
448ebbd 95ed5e7 448ebbd 95ed5e7 448ebbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
"""Complete Generator architecture:
* OmniGenerator
* Encoder
* Decoders
"""
from pathlib import Path
import traceback
import torch
import torch.nn as nn
import torch.nn.functional as F
import yaml
from addict import Dict
from torch import softmax
import climategan.strings as strings
from climategan.deeplab import create_encoder, create_segmentation_decoder
from climategan.depth import create_depth_decoder
from climategan.masker import create_mask_decoder
from climategan.painter import create_painter
from climategan.tutils import init_weights, mix_noise, normalize
def create_generator(opts, device="cpu", latent_shape=None, no_init=False, verbose=0):
G = OmniGenerator(opts, latent_shape, verbose, no_init)
if no_init:
print("Sending to", device)
return G.to(device)
for model in G.decoders:
net = G.decoders[model]
if model == "s":
continue
if isinstance(net, nn.ModuleDict):
for domain, domain_model in net.items():
init_weights(
net[domain_model],
init_type=opts.gen[model].init_type,
init_gain=opts.gen[model].init_gain,
verbose=verbose,
caller=f"create_generator decoder {model} {domain}",
)
else:
init_weights(
G.decoders[model],
init_type=opts.gen[model].init_type,
init_gain=opts.gen[model].init_gain,
verbose=verbose,
caller=f"create_generator decoder {model}",
)
if G.encoder is not None and opts.gen.encoder.architecture == "base":
init_weights(
G.encoder,
init_type=opts.gen.encoder.init_type,
init_gain=opts.gen.encoder.init_gain,
verbose=verbose,
caller="create_generator encoder",
)
print("Sending to", device)
return G.to(device)
class OmniGenerator(nn.Module):
def __init__(self, opts, latent_shape=None, verbose=0, no_init=False):
"""Creates the generator. All decoders listed in opts.gen will be added
to the Generator.decoders ModuleDict if opts.gen.DecoderInitial is not True.
Then can be accessed as G.decoders.T or G.decoders["T"] for instance,
for the image Translation decoder
Args:
opts (addict.Dict): configuration dict
"""
super().__init__()
self.opts = opts
self.verbose = verbose
self.encoder = None
if any(t in opts.tasks for t in "msd"):
self.encoder = create_encoder(opts, no_init, verbose)
self.decoders = {}
self.painter = nn.Module()
if "d" in opts.tasks:
self.decoders["d"] = create_depth_decoder(opts, no_init, verbose)
if self.verbose > 0:
print(f" - Add {self.decoders['d'].__class__.__name__}")
if "s" in opts.tasks:
self.decoders["s"] = create_segmentation_decoder(opts, no_init, verbose)
if "m" in opts.tasks:
self.decoders["m"] = create_mask_decoder(opts, no_init, verbose)
self.decoders = nn.ModuleDict(self.decoders)
if "p" in self.opts.tasks:
self.painter = create_painter(opts, no_init, verbose)
else:
if self.verbose > 0:
print(" - Add Empty Painter")
@property
def device(self):
return next(self.parameters()).device
def __str__(self):
return strings.generator(self)
def encode(self, x):
"""
Forward x through the encoder
Args:
x (torch.Tensor): B3HW input tensor
Returns:
list: High and Low level features from the encoder
"""
assert self.encoder is not None
return self.encoder.forward(x)
def decode(self, x=None, z=None, return_z=False, return_z_depth=False):
"""
Comptutes the predictions of all available decoders from either x or z.
If using spade for the masker with 15 channels, x *must* be provided,
whether z is too or not.
Args:
x (torch.Tensor, optional): Input tensor (B3HW). Defaults to None.
z (list, optional): List of high and low-level features as BCHW.
Defaults to None.
return_z (bool, optional): whether or not to return z in the dict.
Defaults to False.
return_z_depth (bool, optional): whether or not to return z_depth
in the dict. Defaults to False.
Raises:
ValueError: If using spade for the masker with 15 channels but x is None
Returns:
dict: {task: prediction_tensor} (may include z and z_depth
depending on args)
"""
assert x is not None or z is not None
if self.opts.gen.m.use_spade and self.opts.m.spade.cond_nc == 15:
if x is None:
raise ValueError(
"When using spade for the Masker with 15 channels,"
+ " x MUST be provided"
)
z_depth = cond = d = s = None
out = {}
if z is None:
z = self.encode(x)
if return_z:
out["z"] = z
if "d" in self.decoders:
d, z_depth = self.decoders["d"](z)
out["d"] = d
if return_z_depth:
out["z_depth"] = z_depth
if "s" in self.decoders:
s = self.decoders["s"](z, z_depth)
out["s"] = s
if "m" in self.decoders:
if s is not None and d is not None:
cond = self.make_m_cond(d, s, x)
m = self.mask(z=z, cond=cond)
out["m"] = m
return out
def sample_painter_z(self, batch_size, device, force_half=False):
if self.opts.gen.p.no_z:
return None
z = torch.empty(
batch_size,
self.opts.gen.p.latent_dim,
self.painter.z_h,
self.painter.z_w,
device=device,
).normal_(mean=0, std=1.0)
if force_half:
z = z.half()
return z
def make_m_cond(self, d, s, x=None):
"""
Create the masker's conditioning input when using spade from the
d and s predictions and from the input x when cond_nc == 15.
d and s are assumed to have the the same spatial resolution.
if cond_nc == 15 then x is interpolated to match that dimension.
Args:
d (torch.Tensor): Raw depth prediction (B1HW)
s (torch.Tensor): Raw segmentation prediction (BCHW)
x (torch.Tensor, optional): Input tensor (B3hW). Mandatory
when opts.gen.m.spade.cond_nc == 15
Raises:
ValueError: opts.gen.m.spade.cond_nc == 15 but x is None
Returns:
torch.Tensor: B x cond_nc x H x W conditioning tensor.
"""
if self.opts.gen.m.spade.detach:
d = d.detach()
s = s.detach()
cats = [normalize(d), softmax(s, dim=1)]
if self.opts.gen.m.spade.cond_nc == 15:
if x is None:
raise ValueError(
"When using spade for the Masker with 15 channels,"
+ " x MUST be provided"
)
cats += [
F.interpolate(x, s.shape[-2:], mode="bilinear", align_corners=True)
]
return torch.cat(cats, dim=1)
def mask(self, x=None, z=None, cond=None, z_depth=None, sigmoid=True):
"""
Create a mask from either an input x or a latent vector z.
Optionally if the Masker has a spade architecture the conditioning tensor
may be provided (cond). Default behavior applies an element-wise
sigmoid, but can be deactivated (sigmoid=False).
At least one of x or z must be provided (i.e. not None).
If the Masker has a spade architecture and cond_nc == 15 then x cannot
be None.
Args:
x (torch.Tensor, optional): Input tensor B3HW. Defaults to None.
z (list, optional): High and Low level features of the encoder.
Will be computed if None. Defaults to None.
cond ([type], optional): [description]. Defaults to None.
sigmoid (bool, optional): [description]. Defaults to True.
Returns:
torch.Tensor: B1HW mask tensor
"""
assert x is not None or z is not None
if z is None:
z = self.encode(x)
if cond is None and self.opts.gen.m.use_spade:
assert "s" in self.opts.tasks and "d" in self.opts.tasks
with torch.no_grad():
d_pred, z_d = self.decoders["d"](z)
s_pred = self.decoders["s"](z, z_d)
cond = self.make_m_cond(d_pred, s_pred, x)
if z_depth is None and self.opts.gen.m.use_dada:
assert "d" in self.opts.tasks
with torch.no_grad():
_, z_depth = self.decoders["d"](z)
if cond is not None:
device = z[0].device if isinstance(z, (tuple, list)) else z.device
cond = cond.to(device)
logits = self.decoders["m"](z, cond, z_depth)
if not sigmoid:
return logits
return torch.sigmoid(logits)
def paint(self, m, x, no_paste=False):
"""
Paints given a mask and an image
calls painter(z, x * (1.0 - m))
Mask has 1s where water should be painted
Args:
m (torch.Tensor): Mask
x (torch.Tensor): Image to paint
Returns:
torch.Tensor: painted image
"""
z_paint = self.sample_painter_z(x.shape[0], x.device)
m = m.to(x.dtype)
fake = self.painter(z_paint, x * (1.0 - m))
if self.opts.gen.p.paste_original_content and not no_paste:
return x * (1.0 - m) + fake * m
return fake
def paint_cloudy(self, m, x, s, sky_idx=9, res=(8, 8), weight=0.8):
"""
Paints x with water in m through an intermediary cloudy image
where the sky has been replaced with perlin noise to imitate clouds.
The intermediary cloudy image is only used to control the painter's
painting mode, probing it with a cloudy input.
Args:
m (torch.Tensor): water mask
x (torch.Tensor): input tensor
s (torch.Tensor): segmentation prediction (BCHW)
sky_idx (int, optional): Index of the sky class along s's C dimension.
Defaults to 9.
res (tuple, optional): Perlin noise spatial resolution. Defaults to (8, 8).
weight (float, optional): Intermediate image's cloud proportion
(w * cloud + (1-w) * original_sky). Defaults to 0.8.
Returns:
torch.Tensor: painted image with original content pasted.
"""
sky_mask = (
torch.argmax(
F.interpolate(s, x.shape[-2:], mode="bilinear"), dim=1, keepdim=True
)
== sky_idx
).to(x.dtype)
noised_x = mix_noise(x, sky_mask, res=res, weight=weight).to(x.dtype)
fake = self.paint(m, noised_x, no_paste=True)
return x * (1.0 - m) + fake * m
def depth(self, x=None, z=None, return_z_depth=False):
"""
Compute the depth head's output
Args:
x (torch.Tensor, optional): Input B3HW tensor. Defaults to None.
z (list, optional): High and Low level features of the encoder.
Defaults to None.
Returns:
torch.Tensor: B1HW tensor of depth predictions
"""
assert x is not None or z is not None
assert not (x is not None and z is not None)
if z is None:
z = self.encode(x)
depth, z_depth = self.decoders["d"](z)
if depth.shape[1] > 1:
depth = torch.argmax(depth, dim=1)
depth = depth / depth.max()
if return_z_depth:
return depth, z_depth
return depth
def load_val_painter(self):
"""
Loads a validation painter if available in opts.val.val_painter
Returns:
bool: operation success status
"""
try:
# key exists in opts
assert self.opts.val.val_painter
# path exists
ckpt_path = Path(self.opts.val.val_painter).resolve()
assert ckpt_path.exists()
# path is a checkpoint path
assert ckpt_path.is_file()
# opts are available in that path
opts_path = ckpt_path.parent.parent / "opts.yaml"
assert opts_path.exists()
# load opts
with opts_path.open("r") as f:
val_painter_opts = Dict(yaml.safe_load(f))
# load checkpoint
state_dict = torch.load(ckpt_path, map_location=self.device)
# create dummy painter from loaded opts
painter = create_painter(val_painter_opts)
# load state-dict in the dummy painter
painter.load_state_dict(
{k.replace("painter.", ""): v for k, v in state_dict["G"].items()}
)
# send to current device in evaluation mode
device = next(self.parameters()).device
self.painter = painter.eval().to(device)
# disable gradients
for p in self.painter.parameters():
p.requires_grad = False
# success
print(" - Loaded validation-only painter")
return True
except Exception as e:
# something happened, aborting gracefully
print(traceback.format_exc())
print(e)
print(">>> WARNING: error (^) in load_val_painter, aborting.")
return False
|