metadata
license: gpl-3.0
tags:
- generated_from_trainer
datasets:
- mim_gold_ner
metrics:
- precision
- recall
- f1
- accuracy
base_model: vesteinn/IceBERT
model-index:
- name: IceBERT-finetuned-ner
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: mim_gold_ner
type: mim_gold_ner
args: mim-gold-ner
metrics:
- type: precision
value: 0.8870349771350884
name: Precision
- type: recall
value: 0.8575696021029992
name: Recall
- type: f1
value: 0.8720534629404617
name: F1
- type: accuracy
value: 0.9848236357672584
name: Accuracy
IceBERT-finetuned-ner
This model is a fine-tuned version of vesteinn/IceBERT on the mim_gold_ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.0815
- Precision: 0.8870
- Recall: 0.8576
- F1: 0.8721
- Accuracy: 0.9848
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0536 | 1.0 | 2904 | 0.0749 | 0.8749 | 0.8426 | 0.8585 | 0.9831 |
0.0269 | 2.0 | 5808 | 0.0754 | 0.8734 | 0.8471 | 0.8600 | 0.9840 |
0.0173 | 3.0 | 8712 | 0.0815 | 0.8870 | 0.8576 | 0.8721 | 0.9848 |
Framework versions
- Transformers 4.11.0
- Pytorch 1.9.0+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3