File size: 7,863 Bytes
c1f3b43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
---
license: gpl-3.0
tags:
- img2img
- denoiser
- image
---
# denoise_large_v1
denoise_large_v1 is an image denoiser made for images that have a high/medium amount of noise.
It performs slightly better than [denoise_medium_v1](https://huggingface.co/vericudebuget/denoise_medium_v1) on most images and car reconstruct a higher level of detail.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [ConvoLite AI]
- **Funded by:** [VDB]
- **Model type:** [img2img]
- **License:** [gpl-3.0]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
For comercial and noncomercial use.
### Direct Use
For CPU, use the code below:
``` python
import os
import torch
import torch.nn as nn
from PIL import Image
from torchvision.transforms import ToTensor
import numpy as np
from concurrent.futures import ThreadPoolExecutor
class DenoisingModel(nn.Module):
def __init__(self):
super(DenoisingModel, self).__init__()
self.enc1 = nn.Sequential(
nn.Conv2d(3, 64, 3, padding=1),
nn.ReLU(),
nn.Conv2d(64, 64, 3, padding=1),
nn.ReLU()
)
self.pool1 = nn.MaxPool2d(2, 2)
self.up1 = nn.ConvTranspose2d(64, 64, 2, stride=2)
self.dec1 = nn.Sequential(
nn.Conv2d(64, 64, 3, padding=1),
nn.ReLU(),
nn.Conv2d(64, 3, 3, padding=1)
)
def forward(self, x):
e1 = self.enc1(x)
p1 = self.pool1(e1)
u1 = self.up1(p1)
d1 = self.dec1(u1)
return d1
def denoise_patch(model, patch):
transform = ToTensor()
input_patch = transform(patch).unsqueeze(0)
with torch.no_grad():
output_patch = model(input_patch)
denoised_patch = output_patch.squeeze(0).permute(1, 2, 0).numpy() * 255
denoised_patch = np.clip(denoised_patch, 0, 255).astype(np.uint8)
original_patch = np.array(patch)
very_bright_mask = original_patch > 240
bright_mask = (original_patch > 220) & (original_patch <= 240)
denoised_patch[very_bright_mask] = original_patch[very_bright_mask]
blend_factor = 0.7
denoised_patch[bright_mask] = (
blend_factor * original_patch[bright_mask] +
(1 - blend_factor) * denoised_patch[bright_mask]
)
return denoised_patch
def denoise_image(image_path, model_path, patch_size=256, num_threads=4, overlap=32):
model = DenoisingModel()
checkpoint = torch.load(model_path, map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
# Load and get original image dimensions
image = Image.open(image_path).convert("RGB")
width, height = image.size
# Calculate padding needed
pad_right = patch_size - (width % patch_size) if width % patch_size != 0 else 0
pad_bottom = patch_size - (height % patch_size) if height % patch_size != 0 else 0
# Add padding with reflection instead of zeros
padded_width = width + pad_right
padded_height = height + pad_bottom
# Create padded image using reflection padding
padded_image = Image.new("RGB", (padded_width, padded_height))
padded_image.paste(image, (0, 0))
# Fill right border with reflected content
if pad_right > 0:
right_border = image.crop((width - pad_right, 0, width, height))
padded_image.paste(right_border.transpose(Image.FLIP_LEFT_RIGHT), (width, 0))
# Fill bottom border with reflected content
if pad_bottom > 0:
bottom_border = image.crop((0, height - pad_bottom, width, height))
padded_image.paste(bottom_border.transpose(Image.FLIP_TOP_BOTTOM), (0, height))
# Fill corner if needed
if pad_right > 0 and pad_bottom > 0:
corner = image.crop((width - pad_right, height - pad_bottom, width, height))
padded_image.paste(corner.transpose(Image.FLIP_LEFT_RIGHT).transpose(Image.FLIP_TOP_BOTTOM),
(width, height))
# Generate patches with positions
patches = []
positions = []
for i in range(0, padded_height, patch_size - overlap):
for j in range(0, padded_width, patch_size - overlap):
patch = padded_image.crop((j, i, min(j + patch_size, padded_width), min(i + patch_size, padded_height)))
patches.append(patch)
positions.append((i, j))
# Process patches in parallel
with ThreadPoolExecutor(max_workers=num_threads) as executor:
denoised_patches = list(executor.map(lambda p: denoise_patch(model, p), patches))
# Initialize output arrays
denoised_image = np.zeros((padded_height, padded_width, 3), dtype=np.float32)
weight_map = np.zeros((padded_height, padded_width), dtype=np.float32)
# Create smooth blending weights
for (i, j), denoised_patch in zip(positions, denoised_patches):
patch_height, patch_width, _ = denoised_patch.shape
patch_weights = np.ones((patch_height, patch_width), dtype=np.float32)
if i > 0:
patch_weights[:overlap, :] *= np.linspace(0, 1, overlap)[:, np.newaxis]
if j > 0:
patch_weights[:, :overlap] *= np.linspace(0, 1, overlap)[np.newaxis, :]
if i + patch_height < padded_height:
patch_weights[-overlap:, :] *= np.linspace(1, 0, overlap)[:, np.newaxis]
if j + patch_width < padded_width:
patch_weights[:, -overlap:] *= np.linspace(1, 0, overlap)[np.newaxis, :]
# Clip the patch values to prevent very bright pixels
denoised_patch = np.clip(denoised_patch, 0, 255)
denoised_image[i:i + patch_height, j:j + patch_width] += (
denoised_patch * patch_weights[:, :, np.newaxis]
)
weight_map[i:i + patch_height, j:j + patch_width] += patch_weights
# Normalize by weights
mask = weight_map > 0
denoised_image[mask] = denoised_image[mask] / weight_map[mask, np.newaxis]
# Crop to original size
denoised_image = denoised_image[:height, :width]
denoised_image = np.clip(denoised_image, 0, 255).astype(np.uint8)
# Save the result
denoised_image_path = os.path.splitext(image_path)[0] + "_denoised.png"
print(f"Saving denoised image to {denoised_image_path}")
Image.fromarray(denoised_image).save(denoised_image_path)
if __name__ == "__main__":
image_path = input("Enter the path of the image: ")
model_path = r"path/to/model.pkl"
denoise_image(image_path, model_path, num_threads=12)
print("Denoising completed.") # Use the number of threads your processor has.)
```
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
If the image does not have a high level of noise, it is not recommended to use this model, as it will produce less than ideal results.
## Training Details
This model was trained on a single Nvidia T4 GPU for around 2 hours and 30 minutes.
### Training Data
Around 13 GB of publicly available images under the Creative Commons license.
#### Speed
With an AMD Ryzen 5 5500 it can denoise a 2k image in approx. 2 seconds using multithreading. Still have not tested it out with CUDA, but it's probably faster.
#### Hardware
| Specifications | Minimum | Recommended |
|----------|----------|----------|
| CPU | Intel Core i7-2700K or something else that can run Python | AMD Ryzen 5 5500 |
| RAM | 4 GB | 16 GB |
| GPU | not needed | Nvidia GTX 1660 Ti |
#### Software
Python
## Model Card Authors
Vericu de Buget
## Model Card Contact
[convolite@europe.com](mailto:convolite@europe.com)
[ConvoLite](https://convolite.github.io/selector.html) |