File size: 1,015 Bytes
f4d80d8
0e6ee2e
 
 
 
 
 
 
 
 
 
 
f4d80d8
0e6ee2e
2532e7a
0e6ee2e
2532e7a
0e6ee2e
 
 
 
 
 
060a0eb
0e6ee2e
 
 
 
 
 
9dfd49d
 
0e6ee2e
 
 
9dfd49d
0e6ee2e
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
---
datasets:
- DEplain/DEplain-APA-sent
language:
- de
metrics:
- sari
- bleu
- bertscore
library_name: transformers
base_model: google/mT5-large
pipeline_tag: text2text-generation
---
# Model Card for mT5-large-trimmed_deplain-apa

Finetuned mT5-Model for German sentence-level text-simplification.

## Model Details

### Model Description

- **Model type:** Encoder-Decoder-Transformer
- **Language(s) (NLP):** German
- **Finetuned from model:** google/mT5-large
- **Task**: Text-Simplification

## Training Details

### Training Data

[DEplain/DEplain-APA-sent](https://huggingface.co/datasets/DEplain/DEplain-APA-sent) \
Stodden et al. (2023): [arXiv:2305.18939](arXiv:2305.18939)

### Training Procedure

Parameter-efficient Fine-Tuning with LoRA. Vocabulary trimmed to 32.000 most frequent tokens for German.

#### Training Hyperparameters
* Batch Size: 16
* Epochs: 1
* Learning Rate: 0,001
* Optimizer: Adafactor

#### LoRA Hyperparameters
* R: 32
* Alpha: 64
* Dropout:
* Target modules: all linear layers