File size: 2,088 Bytes
4f32618 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: mit
tags:
- generated_from_trainer
datasets:
- pubmed-summarization
metrics:
- rouge
model-index:
- name: bart-finetuned-summarization-pubmed
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: pubmed-summarization
type: pubmed-summarization
config: section
split: validation
args: section
metrics:
- name: Rouge1
type: rouge
value: 43.1219
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-finetuned-summarization-pubmed
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the pubmed-summarization dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7193
- Rouge1: 43.1219
- Rouge2: 18.7311
- Rougel: 28.1006
- Rougelsum: 38.0914
- Gen Len: 128.6263
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- gradient_accumulation_steps: 5
- total_train_batch_size: 50
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:|
| 1.8564 | 1.0 | 2398 | 1.7437 | 43.2294 | 18.867 | 28.2156 | 38.1868 | 128.4766 |
| 1.75 | 2.0 | 4796 | 1.7193 | 43.1219 | 18.7311 | 28.1006 | 38.0914 | 128.6263 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|