File size: 4,898 Bytes
b072237 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
# -*- coding: utf-8 -*-
"""
Created on Fri May 26 14:07:22 2023
@author: vibin
"""
import streamlit as st
from pandasql import sqldf
import pandas as pd
import re
from typing import List
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import re
@st.cache_resource()
def tapas_model():
return(pipeline(task="table-question-answering", model="google/tapas-base-finetuned-wtq"))
@st.cache_resource()
def prepare_input(question: str, table: List[str]):
table_prefix = "table:"
question_prefix = "question:"
join_table = ",".join(table)
inputs = f"{question_prefix} {question} {table_prefix} {join_table}"
input_ids = tokenizer(inputs, max_length=512, return_tensors="pt").input_ids
return input_ids
@st.cache_resource()
def inference(question: str, table: List[str]) -> str:
input_data = prepare_input(question=question, table=table)
input_data = input_data.to(model.device)
outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700)
result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True)
return result
@st.cache_resource()
def tokmod(tok_md):
tkn = AutoTokenizer.from_pretrained(tok_md)
mdl = AutoModelForSeq2SeqLM.from_pretrained(tok_md)
return(tkn,mdl)
### Main
nav = st.sidebar.radio("Navigation",["TAPAS","Text2SQL"])
if nav == "TAPAS":
col1 , col2, col3 = st.columns(3)
col2.title("TAPAS")
col3 , col4 = st.columns([3,12])
col4.text("Tabular Data Text Extraction using text")
table = pd.read_csv("data.csv")
table = table.astype(str)
st.text("DataSet - ")
st.dataframe(table,width=3000,height= 400)
st.title("")
lst_q = ["Which country has low medicare","Who are the patients from india","Who are the patients from india","Patients who have Edema","CUI code for diabetes patients","Patients having oxygen less than 94 but 91"]
v2 = st.selectbox("Choose your text",lst_q,index = 0)
st.title("")
sql_txt = st.text_area("TAPAS Input",v2)
if st.button("Predict"):
tqa = tapas_model()
txt_sql = tqa(table=table, query=sql_txt)["answer"]
st.text("Output - ")
st.success(f"{txt_sql}")
# st.write(all_students)
elif nav == "Text2SQL":
### Function
col1 , col2, col3 = st.columns(3)
col2.title("Text2SQL")
col3 , col4 = st.columns([1,20])
col4.text("Text will be converted to SQL Query and can extract the data from DataSet")
# Import Data
df_qna = pd.read_csv("qnacsv.csv", encoding= 'unicode_escape')
st.title("")
st.text("DataSet - ")
st.dataframe(df_qna,width=3000,height= 500)
st.title("")
lst_q = ["what interface is measure indicator code = 72_HR_ABX and version is 1 and source is TD", "get class code with measure = 72_HR_ABX", "get sum of version for Class_Code is Antibiotic Stewardship", "what interface is measure indicator code = 72_HR_ABX"]
v2 = st.selectbox("Choose your text",lst_q,index = 0)
st.title("")
sql_txt = st.text_area("Text for SQL Conversion",v2)
if st.button("Predict"):
tok_model = "juierror/flan-t5-text2sql-with-schema"
tokenizer,model = tokmod(tok_model)
# text = "what interface is measure indicator code = 72_HR_ABX and version is 1 and source is TD"
table_name = "df_qna"
table_col = ["Type","Class_Code", "Version","Measure_Indicator_Code","Measure_Indicator_Name","Description_Definition", "Source", "Interfaces"]
txt_sql = inference(question=sql_txt, table=table_col)
### SQL Modification
sql_avg = ["AVG","COUNT","DISTINCT","MAX","MIN","SUM"]
txt_sql = txt_sql.replace("table",table_name)
sql_quotes = []
for match in re.finditer("=",txt_sql):
new_txt = txt_sql[match.span()[1]+1:]
try:
match2 = re.search("AND",new_txt)
sql_quotes.append((new_txt[:match2.span()[0]]).strip())
except:
sql_quotes.append(new_txt.strip())
for i in sql_quotes:
qts = "'" + i + "'"
txt_sql = txt_sql.replace(i, qts)
for r in sql_avg:
if r in txt_sql:
rr = re.search(rf"{r} (\w+)", txt_sql)
init = " " + rr[1]
qts = "(" + rr[1] + ")"
txt_sql = txt_sql.replace(init,qts)
else:
pass
st.success(f"{txt_sql}")
all_students = sqldf(txt_sql)
st.text("Output - ")
st.write(all_students)
|