File size: 6,232 Bytes
836ffb0
 
 
 
a216922
836ffb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a216922
836ffb0
 
 
 
 
 
 
a216922
836ffb0
 
 
 
 
 
 
 
 
 
 
 
 
a216922
 
836ffb0
 
 
 
 
 
 
 
 
 
 
 
a216922
836ffb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a216922
 
836ffb0
 
 
 
 
 
 
 
 
 
 
 
 
 
a216922
836ffb0
 
 
 
a216922
 
 
836ffb0
 
 
 
a216922
 
836ffb0
 
a216922
 
 
 
 
 
 
836ffb0
 
 
 
a216922
836ffb0
 
 
 
 
 
 
a216922
 
836ffb0
a216922
836ffb0
a216922
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
836ffb0
 
 
a216922
 
 
 
 
 
 
 
 
 
 
 
 
 
836ffb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 92,
   "id": "edc2e2ff",
   "metadata": {},
   "outputs": [],
   "source": [
    "import librosa\n",
    "import torch\n",
    "from transformers import Wav2Vec2Processor, HubertForCTC\n",
    "from huggingsound import SpeechRecognitionModel\n",
    "import torchaudio\n",
    "from speechbrain.pretrained import EncoderClassifier\n",
    "import time\n",
    "from transformers import Pipeline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 93,
   "id": "76f25cc3",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "12/06/2022 13:42:19 - INFO - huggingsound.speech_recognition.model - Loading model...\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "12/06/2022 13:42:23 - WARNING - root - bos_token <s> not in provided tokens. It will be added to the list of tokens\n",
      "12/06/2022 13:42:23 - WARNING - root - eos_token </s> not in provided tokens. It will be added to the list of tokens\n"
     ]
    }
   ],
   "source": [
    "model_chinese = SpeechRecognitionModel(\"./wav2vec2-large-xlsr-chinese\")\n",
    "processor = Wav2Vec2Processor.from_pretrained(\"./english_fine_tune\")\n",
    "model = HubertForCTC.from_pretrained(\"./english_fine_tune\")\n",
    "language_id = EncoderClassifier.from_hparams(source=\"speechbrain/lang-id-voxlingua107-ecapa\", savedir=\"tmp\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 94,
   "id": "3b142546",
   "metadata": {},
   "outputs": [],
   "source": [
    "def pipeline(path_to_audio):\n",
    "    signal = language_id.load_audio(path_to_audio)\n",
    "    prediction =  language_id.classify_batch(signal)\n",
    "    prediction[3]\n",
    "    \n",
    "    if prediction[3][0] == 'zh: Chinese':\n",
    "        print('Detected Language is Chinese')\n",
    "        transcriptions = model_chinese.transcribe([path_to_audio])\n",
    "        print(transcriptions[0]['transcription'])\n",
    "    else:\n",
    "        print('Detected language is English')\n",
    "        input_audio, sr = librosa.load(path_to_audio, sr = 16000)\n",
    "        input_values = processor(input_audio, return_tensors=\"pt\").input_values  \n",
    "        logits = model(input_values).logits\n",
    "        predicted_ids = torch.argmax(logits, dim=-1)\n",
    "        transcription = processor.decode(predicted_ids[0])\n",
    "        print(transcription)\n",
    "   "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 95,
   "id": "b0fae1dd",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "It is strongly recommended to pass the ``sampling_rate`` argument to this function. Failing to do so can result in silent errors that might be hard to debug.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Detected language is English\n",
      "NISHE JUAN FANMA HE MOVED ABOUT INVISIBLE BUT EVERYONE COULD HEAR HIM\n"
     ]
    }
   ],
   "source": [
    "start = time.time()\n",
    "pipeline('combine.wav')\n",
    "end = time.time()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 96,
   "id": "1e0321b5",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Detected Language is Chinese\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1/1 [00:00<00:00,  1.28it/s]\n",
      "It is strongly recommended to pass the ``sampling_rate`` argument to this function. Failing to do so can result in silent errors that might be hard to debug.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "δ½ ε–œζ¬’ι₯­ε—\n",
      "Detected language is English\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "It is strongly recommended to pass the ``sampling_rate`` argument to this function. Failing to do so can result in silent errors that might be hard to debug.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Detected language is English\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "It is strongly recommended to pass the ``sampling_rate`` argument to this function. Failing to do so can result in silent errors that might be hard to debug.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "HE MOVED ABOUT\n",
      "Detected language is English\n",
      "INVISIBLE BUT EVERYONE COULD HEAR HIM\n"
     ]
    }
   ],
   "source": [
    "from pydub import AudioSegment\n",
    "from pydub.silence import split_on_silence\n",
    "\n",
    "sound_file = AudioSegment.from_wav(\"combine.wav\")\n",
    "audio_chunks = split_on_silence(sound_file, \n",
    "    min_silence_len=100,\n",
    "    silence_thresh=-50\n",
    ")\n",
    "\n",
    "for i, chunk in enumerate(audio_chunks):\n",
    "\n",
    "    out_file = \"./chunk{0}.wav\".format(i)\n",
    "    chunk.export(out_file, format=\"wav\")\n",
    "    pipeline(out_file)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a069a0fd",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}