File size: 1,780 Bytes
625adce
8ff6cb1
 
625adce
8ff6cb1
625adce
8ff6cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
625adce
 
8ff6cb1
 
625adce
8ff6cb1
625adce
8ff6cb1
 
 
 
625adce
8ff6cb1
625adce
8ff6cb1
625adce
8ff6cb1
625adce
8ff6cb1
625adce
8ff6cb1
625adce
8ff6cb1
625adce
8ff6cb1
625adce
8ff6cb1
625adce
8ff6cb1
 
 
 
 
 
 
 
625adce
8ff6cb1
625adce
8ff6cb1
 
 
 
 
625adce
8ff6cb1
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: apache-2.0
base_model: facebook/bart-large
tags:
- generated_from_trainer
datasets:
- stanfordnlp/snli
metrics:
- accuracy
model-index:
- name: bart-large-bn-adapter-3.17M-snli-model3
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: snli
      type: stanfordnlp/snli
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9170900223531803
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-large-bn-adapter-3.17M-snli-model3

This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the snli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2384
- Accuracy: 0.9171

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 5
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.3391        | 1.0   | 17168 | 0.2519          | 0.9111   |
| 0.3134        | 2.0   | 34336 | 0.2398          | 0.9162   |
| 0.3057        | 3.0   | 51504 | 0.2384          | 0.9171   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0