File size: 9,666 Bytes
77249dc a0a8b69 77249dc a0a8b69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
---
license: other
tags:
- generated_from_trainer
model-index:
- name: segformer-b4-crack-segmentation-dataset
results: []
datasets:
- varcoder/crack-segmentation-dataset
language:
- en
library_name: transformers
pipeline_tag: image-segmentation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b4-crack-segmentation-dataset
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0594
- Mean Iou: 0.3346
- Mean Accuracy: 0.6691
- Overall Accuracy: 0.6691
- Accuracy Background: nan
- Accuracy Crack: 0.6691
- Iou Background: 0.0
- Iou Crack: 0.6691
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:|
| 0.2287 | 0.02 | 100 | 0.2515 | 0.1734 | 0.3468 | 0.3468 | nan | 0.3468 | 0.0 | 0.3468 |
| 0.1792 | 0.04 | 200 | 0.1594 | 0.1671 | 0.3342 | 0.3342 | nan | 0.3342 | 0.0 | 0.3342 |
| 0.1177 | 0.06 | 300 | 0.1762 | 0.1044 | 0.2088 | 0.2088 | nan | 0.2088 | 0.0 | 0.2088 |
| 0.0821 | 0.08 | 400 | 0.1706 | 0.2065 | 0.4130 | 0.4130 | nan | 0.4130 | 0.0 | 0.4130 |
| 0.0666 | 0.1 | 500 | 0.1507 | 0.1931 | 0.3863 | 0.3863 | nan | 0.3863 | 0.0 | 0.3863 |
| 0.0675 | 0.12 | 600 | 0.1374 | 0.3114 | 0.6227 | 0.6227 | nan | 0.6227 | 0.0 | 0.6227 |
| 0.0267 | 0.15 | 700 | 0.1400 | 0.2171 | 0.4342 | 0.4342 | nan | 0.4342 | 0.0 | 0.4342 |
| 0.0192 | 0.17 | 800 | 0.1067 | 0.1594 | 0.3187 | 0.3187 | nan | 0.3187 | 0.0 | 0.3187 |
| 0.0711 | 0.19 | 900 | 0.1002 | 0.2915 | 0.5830 | 0.5830 | nan | 0.5830 | 0.0 | 0.5830 |
| 0.0761 | 0.21 | 1000 | 0.0785 | 0.3099 | 0.6199 | 0.6199 | nan | 0.6199 | 0.0 | 0.6199 |
| 0.0802 | 0.23 | 1100 | 0.0829 | 0.3086 | 0.6173 | 0.6173 | nan | 0.6173 | 0.0 | 0.6173 |
| 0.1058 | 0.25 | 1200 | 0.0895 | 0.2139 | 0.4278 | 0.4278 | nan | 0.4278 | 0.0 | 0.4278 |
| 0.0409 | 0.27 | 1300 | 0.0792 | 0.3237 | 0.6475 | 0.6475 | nan | 0.6475 | 0.0 | 0.6475 |
| 0.063 | 0.29 | 1400 | 0.0739 | 0.3084 | 0.6168 | 0.6168 | nan | 0.6168 | 0.0 | 0.6168 |
| 0.0669 | 0.31 | 1500 | 0.0747 | 0.3326 | 0.6653 | 0.6653 | nan | 0.6653 | 0.0 | 0.6653 |
| 0.1277 | 0.33 | 1600 | 0.0735 | 0.3149 | 0.6297 | 0.6297 | nan | 0.6297 | 0.0 | 0.6297 |
| 0.0388 | 0.35 | 1700 | 0.0708 | 0.2525 | 0.5050 | 0.5050 | nan | 0.5050 | 0.0 | 0.5050 |
| 0.0332 | 0.37 | 1800 | 0.0726 | 0.2908 | 0.5816 | 0.5816 | nan | 0.5816 | 0.0 | 0.5816 |
| 0.0435 | 0.4 | 1900 | 0.0673 | 0.2893 | 0.5786 | 0.5786 | nan | 0.5786 | 0.0 | 0.5786 |
| 0.1297 | 0.42 | 2000 | 0.0698 | 0.3438 | 0.6877 | 0.6877 | nan | 0.6877 | 0.0 | 0.6877 |
| 0.1202 | 0.44 | 2100 | 0.0745 | 0.2899 | 0.5798 | 0.5798 | nan | 0.5798 | 0.0 | 0.5798 |
| 0.0549 | 0.46 | 2200 | 0.0657 | 0.3522 | 0.7044 | 0.7044 | nan | 0.7044 | 0.0 | 0.7044 |
| 0.0223 | 0.48 | 2300 | 0.0808 | 0.2686 | 0.5372 | 0.5372 | nan | 0.5372 | 0.0 | 0.5372 |
| 0.0464 | 0.5 | 2400 | 0.0631 | 0.3221 | 0.6442 | 0.6442 | nan | 0.6442 | 0.0 | 0.6442 |
| 0.0364 | 0.52 | 2500 | 0.0778 | 0.3410 | 0.6820 | 0.6820 | nan | 0.6820 | 0.0 | 0.6820 |
| 0.047 | 0.54 | 2600 | 0.0689 | 0.3489 | 0.6978 | 0.6978 | nan | 0.6978 | 0.0 | 0.6978 |
| 0.0322 | 0.56 | 2700 | 0.0640 | 0.2863 | 0.5727 | 0.5727 | nan | 0.5727 | 0.0 | 0.5727 |
| 0.0453 | 0.58 | 2800 | 0.0574 | 0.3340 | 0.6681 | 0.6681 | nan | 0.6681 | 0.0 | 0.6681 |
| 0.0347 | 0.6 | 2900 | 0.0611 | 0.3289 | 0.6578 | 0.6578 | nan | 0.6578 | 0.0 | 0.6578 |
| 0.0916 | 0.62 | 3000 | 0.0609 | 0.3357 | 0.6714 | 0.6714 | nan | 0.6714 | 0.0 | 0.6714 |
| 0.0523 | 0.65 | 3100 | 0.0557 | 0.3318 | 0.6637 | 0.6637 | nan | 0.6637 | 0.0 | 0.6637 |
| 0.1246 | 0.67 | 3200 | 0.0558 | 0.3294 | 0.6588 | 0.6588 | nan | 0.6588 | 0.0 | 0.6588 |
| 0.0501 | 0.69 | 3300 | 0.0697 | 0.2955 | 0.5910 | 0.5910 | nan | 0.5910 | 0.0 | 0.5910 |
| 0.0312 | 0.71 | 3400 | 0.0604 | 0.3414 | 0.6827 | 0.6827 | nan | 0.6827 | 0.0 | 0.6827 |
| 0.0449 | 0.73 | 3500 | 0.0612 | 0.3305 | 0.6611 | 0.6611 | nan | 0.6611 | 0.0 | 0.6611 |
| 0.0111 | 0.75 | 3600 | 0.0617 | 0.2930 | 0.5860 | 0.5860 | nan | 0.5860 | 0.0 | 0.5860 |
| 0.0206 | 0.77 | 3700 | 0.0627 | 0.3663 | 0.7326 | 0.7326 | nan | 0.7326 | 0.0 | 0.7326 |
| 0.051 | 0.79 | 3800 | 0.0649 | 0.3159 | 0.6318 | 0.6318 | nan | 0.6318 | 0.0 | 0.6318 |
| 0.0243 | 0.81 | 3900 | 0.0600 | 0.3370 | 0.6740 | 0.6740 | nan | 0.6740 | 0.0 | 0.6740 |
| 0.0108 | 0.83 | 4000 | 0.0614 | 0.3595 | 0.7190 | 0.7190 | nan | 0.7190 | 0.0 | 0.7190 |
| 0.0951 | 0.85 | 4100 | 0.0564 | 0.3571 | 0.7142 | 0.7142 | nan | 0.7142 | 0.0 | 0.7142 |
| 0.0731 | 0.87 | 4200 | 0.0597 | 0.3497 | 0.6994 | 0.6994 | nan | 0.6994 | 0.0 | 0.6994 |
| 0.0307 | 0.9 | 4300 | 0.0636 | 0.3468 | 0.6937 | 0.6937 | nan | 0.6937 | 0.0 | 0.6937 |
| 0.1039 | 0.92 | 4400 | 0.0594 | 0.3397 | 0.6795 | 0.6795 | nan | 0.6795 | 0.0 | 0.6795 |
| 0.0083 | 0.94 | 4500 | 0.0606 | 0.3512 | 0.7024 | 0.7024 | nan | 0.7024 | 0.0 | 0.7024 |
| 0.0113 | 0.96 | 4600 | 0.0597 | 0.3288 | 0.6576 | 0.6576 | nan | 0.6576 | 0.0 | 0.6576 |
| 0.0417 | 0.98 | 4700 | 0.0595 | 0.3405 | 0.6811 | 0.6811 | nan | 0.6811 | 0.0 | 0.6811 |
| 0.1944 | 1.0 | 4800 | 0.0594 | 0.3346 | 0.6691 | 0.6691 | nan | 0.6691 | 0.0 | 0.6691 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3 |