File size: 9,666 Bytes
77249dc
 
 
 
 
 
 
a0a8b69
 
 
 
 
 
77249dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0a8b69
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
---
license: other
tags:
- generated_from_trainer
model-index:
- name: segformer-b4-crack-segmentation-dataset
  results: []
datasets:
- varcoder/crack-segmentation-dataset
language:
- en
library_name: transformers
pipeline_tag: image-segmentation
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b4-crack-segmentation-dataset

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0594
- Mean Iou: 0.3346
- Mean Accuracy: 0.6691
- Overall Accuracy: 0.6691
- Accuracy Background: nan
- Accuracy Crack: 0.6691
- Iou Background: 0.0
- Iou Crack: 0.6691

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:|
| 0.2287        | 0.02  | 100  | 0.2515          | 0.1734   | 0.3468        | 0.3468           | nan                 | 0.3468         | 0.0            | 0.3468    |
| 0.1792        | 0.04  | 200  | 0.1594          | 0.1671   | 0.3342        | 0.3342           | nan                 | 0.3342         | 0.0            | 0.3342    |
| 0.1177        | 0.06  | 300  | 0.1762          | 0.1044   | 0.2088        | 0.2088           | nan                 | 0.2088         | 0.0            | 0.2088    |
| 0.0821        | 0.08  | 400  | 0.1706          | 0.2065   | 0.4130        | 0.4130           | nan                 | 0.4130         | 0.0            | 0.4130    |
| 0.0666        | 0.1   | 500  | 0.1507          | 0.1931   | 0.3863        | 0.3863           | nan                 | 0.3863         | 0.0            | 0.3863    |
| 0.0675        | 0.12  | 600  | 0.1374          | 0.3114   | 0.6227        | 0.6227           | nan                 | 0.6227         | 0.0            | 0.6227    |
| 0.0267        | 0.15  | 700  | 0.1400          | 0.2171   | 0.4342        | 0.4342           | nan                 | 0.4342         | 0.0            | 0.4342    |
| 0.0192        | 0.17  | 800  | 0.1067          | 0.1594   | 0.3187        | 0.3187           | nan                 | 0.3187         | 0.0            | 0.3187    |
| 0.0711        | 0.19  | 900  | 0.1002          | 0.2915   | 0.5830        | 0.5830           | nan                 | 0.5830         | 0.0            | 0.5830    |
| 0.0761        | 0.21  | 1000 | 0.0785          | 0.3099   | 0.6199        | 0.6199           | nan                 | 0.6199         | 0.0            | 0.6199    |
| 0.0802        | 0.23  | 1100 | 0.0829          | 0.3086   | 0.6173        | 0.6173           | nan                 | 0.6173         | 0.0            | 0.6173    |
| 0.1058        | 0.25  | 1200 | 0.0895          | 0.2139   | 0.4278        | 0.4278           | nan                 | 0.4278         | 0.0            | 0.4278    |
| 0.0409        | 0.27  | 1300 | 0.0792          | 0.3237   | 0.6475        | 0.6475           | nan                 | 0.6475         | 0.0            | 0.6475    |
| 0.063         | 0.29  | 1400 | 0.0739          | 0.3084   | 0.6168        | 0.6168           | nan                 | 0.6168         | 0.0            | 0.6168    |
| 0.0669        | 0.31  | 1500 | 0.0747          | 0.3326   | 0.6653        | 0.6653           | nan                 | 0.6653         | 0.0            | 0.6653    |
| 0.1277        | 0.33  | 1600 | 0.0735          | 0.3149   | 0.6297        | 0.6297           | nan                 | 0.6297         | 0.0            | 0.6297    |
| 0.0388        | 0.35  | 1700 | 0.0708          | 0.2525   | 0.5050        | 0.5050           | nan                 | 0.5050         | 0.0            | 0.5050    |
| 0.0332        | 0.37  | 1800 | 0.0726          | 0.2908   | 0.5816        | 0.5816           | nan                 | 0.5816         | 0.0            | 0.5816    |
| 0.0435        | 0.4   | 1900 | 0.0673          | 0.2893   | 0.5786        | 0.5786           | nan                 | 0.5786         | 0.0            | 0.5786    |
| 0.1297        | 0.42  | 2000 | 0.0698          | 0.3438   | 0.6877        | 0.6877           | nan                 | 0.6877         | 0.0            | 0.6877    |
| 0.1202        | 0.44  | 2100 | 0.0745          | 0.2899   | 0.5798        | 0.5798           | nan                 | 0.5798         | 0.0            | 0.5798    |
| 0.0549        | 0.46  | 2200 | 0.0657          | 0.3522   | 0.7044        | 0.7044           | nan                 | 0.7044         | 0.0            | 0.7044    |
| 0.0223        | 0.48  | 2300 | 0.0808          | 0.2686   | 0.5372        | 0.5372           | nan                 | 0.5372         | 0.0            | 0.5372    |
| 0.0464        | 0.5   | 2400 | 0.0631          | 0.3221   | 0.6442        | 0.6442           | nan                 | 0.6442         | 0.0            | 0.6442    |
| 0.0364        | 0.52  | 2500 | 0.0778          | 0.3410   | 0.6820        | 0.6820           | nan                 | 0.6820         | 0.0            | 0.6820    |
| 0.047         | 0.54  | 2600 | 0.0689          | 0.3489   | 0.6978        | 0.6978           | nan                 | 0.6978         | 0.0            | 0.6978    |
| 0.0322        | 0.56  | 2700 | 0.0640          | 0.2863   | 0.5727        | 0.5727           | nan                 | 0.5727         | 0.0            | 0.5727    |
| 0.0453        | 0.58  | 2800 | 0.0574          | 0.3340   | 0.6681        | 0.6681           | nan                 | 0.6681         | 0.0            | 0.6681    |
| 0.0347        | 0.6   | 2900 | 0.0611          | 0.3289   | 0.6578        | 0.6578           | nan                 | 0.6578         | 0.0            | 0.6578    |
| 0.0916        | 0.62  | 3000 | 0.0609          | 0.3357   | 0.6714        | 0.6714           | nan                 | 0.6714         | 0.0            | 0.6714    |
| 0.0523        | 0.65  | 3100 | 0.0557          | 0.3318   | 0.6637        | 0.6637           | nan                 | 0.6637         | 0.0            | 0.6637    |
| 0.1246        | 0.67  | 3200 | 0.0558          | 0.3294   | 0.6588        | 0.6588           | nan                 | 0.6588         | 0.0            | 0.6588    |
| 0.0501        | 0.69  | 3300 | 0.0697          | 0.2955   | 0.5910        | 0.5910           | nan                 | 0.5910         | 0.0            | 0.5910    |
| 0.0312        | 0.71  | 3400 | 0.0604          | 0.3414   | 0.6827        | 0.6827           | nan                 | 0.6827         | 0.0            | 0.6827    |
| 0.0449        | 0.73  | 3500 | 0.0612          | 0.3305   | 0.6611        | 0.6611           | nan                 | 0.6611         | 0.0            | 0.6611    |
| 0.0111        | 0.75  | 3600 | 0.0617          | 0.2930   | 0.5860        | 0.5860           | nan                 | 0.5860         | 0.0            | 0.5860    |
| 0.0206        | 0.77  | 3700 | 0.0627          | 0.3663   | 0.7326        | 0.7326           | nan                 | 0.7326         | 0.0            | 0.7326    |
| 0.051         | 0.79  | 3800 | 0.0649          | 0.3159   | 0.6318        | 0.6318           | nan                 | 0.6318         | 0.0            | 0.6318    |
| 0.0243        | 0.81  | 3900 | 0.0600          | 0.3370   | 0.6740        | 0.6740           | nan                 | 0.6740         | 0.0            | 0.6740    |
| 0.0108        | 0.83  | 4000 | 0.0614          | 0.3595   | 0.7190        | 0.7190           | nan                 | 0.7190         | 0.0            | 0.7190    |
| 0.0951        | 0.85  | 4100 | 0.0564          | 0.3571   | 0.7142        | 0.7142           | nan                 | 0.7142         | 0.0            | 0.7142    |
| 0.0731        | 0.87  | 4200 | 0.0597          | 0.3497   | 0.6994        | 0.6994           | nan                 | 0.6994         | 0.0            | 0.6994    |
| 0.0307        | 0.9   | 4300 | 0.0636          | 0.3468   | 0.6937        | 0.6937           | nan                 | 0.6937         | 0.0            | 0.6937    |
| 0.1039        | 0.92  | 4400 | 0.0594          | 0.3397   | 0.6795        | 0.6795           | nan                 | 0.6795         | 0.0            | 0.6795    |
| 0.0083        | 0.94  | 4500 | 0.0606          | 0.3512   | 0.7024        | 0.7024           | nan                 | 0.7024         | 0.0            | 0.7024    |
| 0.0113        | 0.96  | 4600 | 0.0597          | 0.3288   | 0.6576        | 0.6576           | nan                 | 0.6576         | 0.0            | 0.6576    |
| 0.0417        | 0.98  | 4700 | 0.0595          | 0.3405   | 0.6811        | 0.6811           | nan                 | 0.6811         | 0.0            | 0.6811    |
| 0.1944        | 1.0   | 4800 | 0.0594          | 0.3346   | 0.6691        | 0.6691           | nan                 | 0.6691         | 0.0            | 0.6691    |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3