|
---
|
|
library_name: transformers
|
|
license: apache-2.0
|
|
base_model: ntu-spml/distilhubert
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- marsyas/gtzan
|
|
metrics:
|
|
- accuracy
|
|
model-index:
|
|
- name: distilhubert-finetuned-gtzan
|
|
results:
|
|
- task:
|
|
name: Audio Classification
|
|
type: audio-classification
|
|
dataset:
|
|
name: GTZAN
|
|
type: marsyas/gtzan
|
|
config: all
|
|
split: train
|
|
args: all
|
|
metrics:
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.7435897435897436
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# distilhubert-finetuned-gtzan
|
|
|
|
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 0.9861
|
|
- Accuracy: 0.7436
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 5e-05
|
|
- train_batch_size: 10
|
|
- eval_batch_size: 10
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_ratio: 0.1
|
|
- num_epochs: 20
|
|
- mixed_precision_training: Native AMP
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
|
| 2.1171 | 1.0 | 70 | 2.1232 | 0.2308 |
|
|
| 1.534 | 2.0 | 140 | 1.6014 | 0.5128 |
|
|
| 1.4328 | 3.0 | 210 | 1.2896 | 0.5641 |
|
|
| 0.8631 | 4.0 | 280 | 1.1275 | 0.5897 |
|
|
| 0.6448 | 5.0 | 350 | 1.0679 | 0.6667 |
|
|
| 0.482 | 6.0 | 420 | 0.8798 | 0.7051 |
|
|
| 0.2458 | 7.0 | 490 | 0.8290 | 0.7564 |
|
|
| 0.2264 | 8.0 | 560 | 0.8350 | 0.7564 |
|
|
| 0.1661 | 9.0 | 630 | 0.8284 | 0.7179 |
|
|
| 0.0286 | 10.0 | 700 | 0.9681 | 0.7179 |
|
|
| 0.0155 | 11.0 | 770 | 0.9861 | 0.7436 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.45.1
|
|
- Pytorch 2.4.1+cu121
|
|
- Datasets 3.0.1
|
|
- Tokenizers 0.20.0
|
|
|