File size: 2,058 Bytes
529b65b 880942e 529b65b 880942e 529b65b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: test-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test-model
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9852
- Accuracy: 0.9663
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| No log | 0.9771 | 32 | 2.6002 | 0.3131 |
| No log | 1.9847 | 65 | 2.2128 | 0.3973 |
| No log | 2.9924 | 98 | 1.8853 | 0.4949 |
| 2.4861 | 4.0 | 131 | 1.5879 | 0.6162 |
| 2.4861 | 4.9771 | 163 | 1.3575 | 0.7037 |
| 2.4861 | 5.9847 | 196 | 1.2166 | 0.8182 |
| 1.7056 | 6.9924 | 229 | 1.0793 | 0.8923 |
| 1.7056 | 8.0 | 262 | 0.9852 | 0.9663 |
| 1.7056 | 8.9771 | 294 | 0.9393 | 0.9562 |
| 1.276 | 9.7710 | 320 | 0.9227 | 0.9495 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
|