File size: 2,639 Bytes
b215f80 28892f9 b215f80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
pipeline_tag: sentence-similarity
language: en
license: apache-2.0
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- onnx
---
#
This is the ONNX model of sentence-transformers/all-MiniLM-L6-v2 [https://seb.sbert.net]. Currently, Hugging Face does not support downloading ONNX model and generate embeddings. I have created a workaround using sbert and optimum together to generate embeddings.
```
pip install onnx
pip install onnxruntime==1.10.0
pip install transformers>4.6.1
pip install sentencepiece
pip install sentence-transformers
pip install optimum
pip install torch==1.9.0
```
Then you can use the model like this:
```python
import os
from sentence_transformers.util import snapshot_download
from transformers import AutoTokenizer
from optimum.onnxruntime import ORTModelForFeatureExtraction
from sentence_transformers.models import Transformer, Pooling, Dense
import torch
from transformers.modeling_outputs import BaseModelOutput
import torch.nn.functional as F
import shutil
model_name = 'vamsibanda/sbert-onnx-all-MiniLM-L12-v2'
cache_folder = './'
model_path = os.path.join(cache_folder, model_name.replace("/", "_"))
def download_onnx_model(model_name, cache_folder, model_path, force_download = False):
if force_download and os.path.exists(model_path):
shutil.rmtree(model_path)
elif os.path.exists(model_path):
return
snapshot_download(model_name,
cache_dir=cache_folder,
library_name='sentence-transformers'
)
return
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def generate_embedding(text):
token = tokenizer(text, return_tensors='pt')
embedding = model(input_ids=token['input_ids'], attention_mask=token['attention_mask'])
embedding = mean_pooling(embedding, token['attention_mask'])
embedding = F.normalize(embedding, p=2, dim=1)
return embedding.tolist()[0]
_ = download_onnx_model(model_name, cache_folder, model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = ORTModelForFeatureExtraction.from_pretrained(model_path, force_download=False)
pooling_layer = Pooling.load(f"{model_path}/1_Pooling")
generate_embedding('That is a happy person')
``` |