File size: 1,301 Bytes
b06ea2b
c8a9efa
b06ea2b
 
 
0c80ab1
b06ea2b
 
 
f16cce5
cd65259
 
 
5a0275d
 
cd65259
f16cce5
cd65259
f16cce5
cd65259
f16cce5
cd65259
 
 
f16cce5
cd65259
f16cce5
cd65259
f16cce5
 
cd65259
 
 
 
 
 
 
 
 
 
 
5a0275d
cd65259
 
 
5a0275d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
license: other
tags:
- generated_from_trainer
model-index:
- name: finetuned-distilbert-news-article-categorization
  results: []
---

### finetuned-distilbert-news-article-catgorization

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the news_article_categorization dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1548
- F1_score(weighted): 0.96

### Model description

 More information needed

### Intended uses & limitations

More information needed

### Training and evaluation data

The model was trained on some subset of the news_article_categorization dataset and it was validated on the remaining subset of the data

### Training procedure
More information needed

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-5
- train_batch_size: 3
- eval_batch_size: 3
- seed: 17
- optimizer: AdamW(lr=1e-5 and epsilon=1e-08)
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 0
- num_epochs: 2
### Training results
| Training Loss | Epoch |  Validation Loss | f1 score   |
|:-------------:|:-----:|:---------------: |:------:|
| 0.6359        | 1.0   | 0.1739           | 0.9619 |
| 0.1548        | 2.0   | 0.1898           | 0.9648 |