File size: 1,301 Bytes
b06ea2b c8a9efa b06ea2b 0c80ab1 b06ea2b f16cce5 cd65259 5a0275d cd65259 f16cce5 cd65259 f16cce5 cd65259 f16cce5 cd65259 f16cce5 cd65259 f16cce5 cd65259 f16cce5 cd65259 5a0275d cd65259 5a0275d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
license: other
tags:
- generated_from_trainer
model-index:
- name: finetuned-distilbert-news-article-categorization
results: []
---
### finetuned-distilbert-news-article-catgorization
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the news_article_categorization dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1548
- F1_score(weighted): 0.96
### Model description
More information needed
### Intended uses & limitations
More information needed
### Training and evaluation data
The model was trained on some subset of the news_article_categorization dataset and it was validated on the remaining subset of the data
### Training procedure
More information needed
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-5
- train_batch_size: 3
- eval_batch_size: 3
- seed: 17
- optimizer: AdamW(lr=1e-5 and epsilon=1e-08)
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 0
- num_epochs: 2
### Training results
| Training Loss | Epoch | Validation Loss | f1 score |
|:-------------:|:-----:|:---------------: |:------:|
| 0.6359 | 1.0 | 0.1739 | 0.9619 |
| 0.1548 | 2.0 | 0.1898 | 0.9648 |
|