|
--- |
|
language: en |
|
datasets: |
|
- librispeech_asr |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
license: apache-2.0 |
|
--- |
|
|
|
TODO: [To be filled] |
|
|
|
|
|
## Evaluation on LibriSpeech Test |
|
|
|
The following script shows how to evaluate this model on the [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) *"clean"* and *"other"* test dataset. |
|
|
|
```python |
|
from datasets import load_dataset |
|
from transformers import Speech2TextTransformerForConditionalGeneration, Speech2TextTransformerTokenizer |
|
import soundfile as sf |
|
from jiwer import wer |
|
|
|
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") # change to "other" for other test dataset |
|
|
|
model = Speech2TextTransformerForConditionalGeneration.from_pretrained("valhalla/s2t_librispeech_large").to("cuda") |
|
tokenizer = Speech2TextTransformerTokenizer.from_pretrained("valhalla/s2t_librispeech_large", do_upper_case=True) |
|
|
|
def map_to_array(batch): |
|
speech, _ = sf.read(batch["file"]) |
|
batch["speech"] = speech |
|
return batch |
|
|
|
librispeech_eval = librispeech_eval.map(map_to_array) |
|
|
|
def map_to_pred(batch): |
|
features = tokenizer(batch["speech"], sample_rate=16000, padding=True, return_tensors="pt") |
|
input_features = features.input_features.to("cuda") |
|
attention_mask = features.attention_mask.to("cuda") |
|
|
|
gen_tokens = model.generate(input_ids=input_features, attention_mask=attention_mask) |
|
batch["transcription"] = tokenizer.batch_decode(gen_tokens, skip_special_tokens=True) |
|
return batch |
|
|
|
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=8, remove_columns=["speech"]) |
|
|
|
print("WER:", wer(result["text"], result["transcription"])) |
|
``` |
|
|
|
*Result (WER)*: |
|
|
|
| "clean" | "other" | |
|
|---|---| |
|
| 3.3 | 7.5 | |