File size: 2,565 Bytes
79a61f7 18ea32a 79a61f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
datasets:
- squad
tags:
- question-generation
- distilt5
- distilt5-qg
widget:
- text: <hl> 42 <hl> is the answer to life, the universe and everything. </s>
- text: Python is a programming language. It is developed by <hl> Guido Van Rossum
<hl>. </s>
- text: Although <hl> practicality <hl> beats purity </s>
license: mit
---
## DistilT5 for question-generation
This is distilled version of [t5-small-qa-qg-hl](https://huggingface.co/valhalla/t5-small-qa-qg-hl) model trained for answer aware question generation task. The answer spans are highlighted within the text with special highlight tokens.
The model is distilled using the **No Teacher Distillation** method proposed by Huggingface, [here](https://github.com/huggingface/transformers/tree/master/examples/seq2seq#distilbart).
We just copy alternating layers from `t5-small-qa-qg-hl` and finetune more on the same data. Following table lists other distilled models and their metrics.
| Name | BLEU-4 | METEOR | ROUGE-L | QA-EM | QA-F1 |
|---------------------------------------------------------------------------------|---------|---------|---------|--------|--------|
| [distilt5-qg-hl-6-4](https://huggingface.co/valhalla/distilt5-qg-hl-6-4) | 18.4141 | 24.8417 | 40.3435 | - | - |
| [distilt5-qa-qg-hl-6-4](https://huggingface.co/valhalla/distilt5-qa-qg-hl-6-4) | 18.6493 | 24.9685 | 40.5605 | 76.13 | 84.659 |
| [distilt5-qg-hl-12-6](https://huggingface.co/valhalla/distilt5-qg-hl-12-6) | 20.5275 | 26.5010 | 43.2676 | - | - |
| [distilt5-qa-qg-hl-12-6](https://huggingface.co/valhalla/distilt5-qa-qg-hl-12-6)| 20.6109 | 26.4533 | 43.0895 | 81.61 | 89.831 |
You can play with the model using the inference API, just highlight the answer spans with `<hl>` tokens. For example
`<hl> 42 <hl> is the answer to life, the universe and everything.`
For more deatils see [this](https://github.com/patil-suraj/question_generation) repo.
### Model in action 🚀
You'll need to clone the [repo](https://github.com/patil-suraj/question_generation).
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/question_generation/blob/master/question_generation.ipynb)
```python3
from pipelines import pipeline
nlp = pipeline("question-generation", model="valhalla/distilt5-qg-hl-6-4")
nlp("42 is the answer to life, universe and everything.")
=> [{'answer': '42', 'question': 'What is the answer to life?'}]
``` |