vadhri's picture
End of training
ac5396b verified
|
raw
history blame
2.94 kB
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: music-genre-classifer-20-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.87

music-genre-classifer-20-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1035
  • Accuracy: 0.87

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0544 1.0 225 1.9608 0.47
1.2995 2.0 450 1.3852 0.51
0.8875 3.0 675 0.9288 0.71
0.4092 4.0 900 0.8114 0.76
0.5624 5.0 1125 0.8704 0.77
0.0609 6.0 1350 0.7951 0.82
0.1018 7.0 1575 0.7055 0.86
0.2941 8.0 1800 0.8832 0.83
0.0044 9.0 2025 0.9883 0.83
0.0025 10.0 2250 0.9306 0.88
0.0016 11.0 2475 0.9535 0.86
0.0012 12.0 2700 1.0921 0.85
0.001 13.0 2925 1.0428 0.86
0.0011 14.0 3150 1.2270 0.83
0.0008 15.0 3375 1.1831 0.84
0.0007 16.0 3600 1.2124 0.84
0.0007 17.0 3825 1.0806 0.86
0.2454 18.0 4050 1.1530 0.85
0.0006 19.0 4275 1.1078 0.86
0.0006 20.0 4500 1.1035 0.87

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2