metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: music-genre-classifer-20-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.82
music-genre-classifer-20-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.5510
- Accuracy: 0.82
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Accuracy | Validation Loss |
---|---|---|---|---|
2.201 | 1.0 | 113 | 0.39 | 2.1256 |
1.6789 | 2.0 | 226 | 0.59 | 1.6543 |
1.5602 | 3.0 | 339 | 0.64 | 1.3917 |
1.1966 | 4.0 | 452 | 0.67 | 1.1946 |
1.1131 | 5.0 | 565 | 0.77 | 1.0492 |
1.0258 | 6.0 | 678 | 0.76 | 0.9712 |
0.988 | 7.0 | 791 | 0.76 | 0.9160 |
0.7303 | 8.0 | 904 | 0.8 | 0.8704 |
0.8036 | 9.0 | 1017 | 0.8 | 0.8425 |
0.742 | 10.0 | 1130 | 0.81 | 0.8224 |
0.7463 | 11.0 | 1243 | 0.81 | 0.8140 |
0.7428 | 12.0 | 1356 | 0.78 | 0.8112 |
0.6081 | 13.0 | 1469 | 0.82 | 0.6975 |
0.8154 | 14.0 | 1582 | 0.84 | 0.6636 |
0.3758 | 15.0 | 1695 | 0.84 | 0.6215 |
0.503 | 16.0 | 1808 | 0.81 | 0.6251 |
0.4542 | 17.0 | 1921 | 0.84 | 0.5869 |
0.3285 | 18.0 | 2034 | 0.85 | 0.5830 |
0.4309 | 19.0 | 2147 | 0.82 | 0.5844 |
0.342 | 20.0 | 2260 | 0.85 | 0.5840 |
0.3051 | 21.0 | 2373 | 0.83 | 0.5843 |
0.3558 | 22.0 | 2486 | 0.6144 | 0.79 |
0.3371 | 23.0 | 2599 | 0.5673 | 0.81 |
0.2882 | 24.0 | 2712 | 0.5365 | 0.84 |
0.2326 | 25.0 | 2825 | 0.5848 | 0.83 |
0.192 | 26.0 | 2938 | 0.5406 | 0.85 |
0.1528 | 27.0 | 3051 | 0.5482 | 0.82 |
0.1937 | 28.0 | 3164 | 0.5448 | 0.84 |
0.1264 | 29.0 | 3277 | 0.5487 | 0.84 |
0.1356 | 30.0 | 3390 | 0.5510 | 0.82 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2