File size: 2,351 Bytes
f6ec3fa
 
 
 
 
 
 
 
 
 
1fa5a1e
 
f6ec3fa
 
 
52e174f
 
 
02377c2
 
f6ec3fa
 
 
8515138
 
 
 
 
 
 
f6ec3fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
language:
- en
license: mit
tags:
- llama-cpp
- gguf-my-repo
base_model: RESMPDEV/Wukong-Phi-3-Instruct-Ablated
datasets:
- cognitivecomputations/Dolphin-2.9
uncensored:
- yes
---

# v8karlo/Wukong-Phi-3-Instruct-Ablated-Q4_K_M-GGUF

UNCENSORED Phi-3 model.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/662c3116277765660783ca6d/OUGbRFBAx9Ibs2bD-OZGD.png)

This model was converted to GGUF format from [`RESMPDEV/Wukong-Phi-3-Instruct-Ablated`](https://huggingface.co/RESMPDEV/Wukong-Phi-3-Instruct-Ablated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/RESMPDEV/Wukong-Phi-3-Instruct-Ablated) for more details on the model.


Convert Safetensors to GGUF . https://huggingface.co/spaces/ggml-org/gguf-my-repo   .

<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/662c3116277765660783ca6d/qPHdaxOccIFcpmcewfa9r.mp4"></video>



## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama --hf-repo v8karlo/Wukong-Phi-3-Instruct-Ablated-Q4_K_M-GGUF --hf-file wukong-phi-3-instruct-ablated-q4_k_m.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo v8karlo/Wukong-Phi-3-Instruct-Ablated-Q4_K_M-GGUF --hf-file wukong-phi-3-instruct-ablated-q4_k_m.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./main --hf-repo v8karlo/Wukong-Phi-3-Instruct-Ablated-Q4_K_M-GGUF --hf-file wukong-phi-3-instruct-ablated-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or 
```
./server --hf-repo v8karlo/Wukong-Phi-3-Instruct-Ablated-Q4_K_M-GGUF --hf-file wukong-phi-3-instruct-ablated-q4_k_m.gguf -c 2048
```