polyjuice / README.md
tongshuangwu
update readme
f028088
|
raw
history blame
1.98 kB
---
language: "en"
tags:
- counterfactual generation
widget:
- text: "It is great for kids. <perturb> [negation] It [BLANK] great for kids. [SEP]"
---
# Polyjuice
## Model description
This is a ported version of [Polyjuice](https://homes.cs.washington.edu/~wtshuang/static/papers/2021-arxiv-polyjuice.pdf), the general-purpose counterfactual generator.
#### How to use
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("uw-hai/polyjuice")
model = AutoModelWithLMHead.from_pretrained("uw-hai/polyjuice")
prompt_text = "A dog is embraced by the woman. <perturb> [negation] A dog is [BLANK] the woman."
# or try: "A dog is embraced by the woman. <perturb> [restructure] A dog is [BLANK] the woman."
perturb_tok, end_tok = "<|perturb|>", "<|endoftext|>"
encoded_prompt = tokenizer.encode(prompt_text, add_special_tokens=False, return_tensors="pt")
input_ids = encoded_prompt
stop_token= '\n'
repetition_penalty=1
output_sequences = model.generate(
input_ids=input_ids,
max_length=100 + len(encoded_prompt[0]),
temperature=0.1,
num_beams=10,
num_return_sequences=3)
if len(output_sequences.shape) > 2:
output_sequences.squeeze_()
for generated_sequence_idx, generated_sequence in enumerate(output_sequences):
generated_sequence = generated_sequence.tolist()
# Decode text
text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True)
# Remove all text after the stop token
text = text[: text.find(stop_token) if stop_token and text.find(stop_token)>-1 else None]
text = text[: text.find(end_tok) if end_tok and text.find(end_tok)>-1 else None]
print(text)
```
### BibTeX entry and citation info
```bibtex
@article{wu2021polyjuice,
title={Polyjuice: Automated, General-purpose Counterfactual Generation},
author = {Wu, Tongshuang and Ribeiro, Marco Tulio and Heer, Jeffrey and Weld Daniel S.},
journal={arXiv preprint},
year={2021}
}
```