uvegesistvan's picture
Update README.md
4719f52 verified
|
raw
history blame
1.84 kB
---
license: cc-by-nc-4.0
language:
- hu
metrics:
- accuracy
- f1
model-index:
- name: Hun_RoBERTa_large_Plain
results:
- task:
type: text-classification
metrics:
- type: accuracy
value: 0.79
- type: f1
value: 0.79
widget:
- text: "A tanúsítvány meghatározott adatainak a 2008/118/EK irányelv IV. fejezete szerinti szállításához szükséges adminisztratív okmányban..."
example_title: "Incomprehensible"
- text: "Az AEO-engedély birtokosainak listáján – keresésre – megjelenő információk: az engedélyes neve, az engedélyt kibocsátó ország..."
example_title: "Comprehensible"
---
## Model description
Cased fine-tuned XLM-RoBERTa-large model for Hungarian, trained to classify sentences based on their plain language comprehensibility.
## Intended uses & limitations
The model is designed to classify sentences as either "comprehensible" or "not comprehensible" (according to Plain Language guidelines):
* **Label_0** - "comprehensible"
* **Label_1** - "not comprehensible"
## Training
Fine-tuned version of the original `xlm-roberta-large` model, trained on a dataset of Hungarian legal and administrative texts.
## Eval results
| Class | Precision | Recall | F-Score |
| ----- | --------- | ------ | ------- |
| **Comprehensible / Label_0** | **0.76** | **0.86** | **0.81** |
| **Not comprehensible / Label_1** | **0.83** | **0.72** | **0.77** |
| **accuracy** | | | **0.79** |
| **macro avg** | **0.80** | **0.79** | **0.79** |
| **weighted avg** | **0.79** | **0.79** | **0.79** |
## Usage
```py
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("uvegesistvan/Hun_RoBERTa_large_Plain")
model = AutoModelForSequenceClassification.from_pretrained("uvegesistvan/Hun_RoBERTa_large_Plain")
```