uvegesistvan's picture
Update README.md
4719f52 verified
|
raw
history blame
1.84 kB
metadata
license: cc-by-nc-4.0
language:
  - hu
metrics:
  - accuracy
  - f1
model-index:
  - name: Hun_RoBERTa_large_Plain
    results:
      - task:
          type: text-classification
        metrics:
          - type: accuracy
            value: 0.79
          - type: f1
            value: 0.79
widget:
  - text: >-
      A tanúsítvány meghatározott adatainak a 2008/118/EK irányelv IV. fejezete
      szerinti szállításához szükséges adminisztratív okmányban...
    example_title: Incomprehensible
  - text: >-
      Az AEO-engedély birtokosainak listáján – keresésre – megjelenő
      információk: az engedélyes neve, az engedélyt kibocsátó ország...
    example_title: Comprehensible

Model description

Cased fine-tuned XLM-RoBERTa-large model for Hungarian, trained to classify sentences based on their plain language comprehensibility.

Intended uses & limitations

The model is designed to classify sentences as either "comprehensible" or "not comprehensible" (according to Plain Language guidelines):

  • Label_0 - "comprehensible"
  • Label_1 - "not comprehensible"

Training

Fine-tuned version of the original xlm-roberta-large model, trained on a dataset of Hungarian legal and administrative texts.

Eval results

Class Precision Recall F-Score
Comprehensible / Label_0 0.76 0.86 0.81
Not comprehensible / Label_1 0.83 0.72 0.77
accuracy 0.79
macro avg 0.80 0.79 0.79
weighted avg 0.79 0.79 0.79

Usage

from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("uvegesistvan/Hun_RoBERTa_large_Plain")
model = AutoModelForSequenceClassification.from_pretrained("uvegesistvan/Hun_RoBERTa_large_Plain")