File size: 18,338 Bytes
0ded4f7 832be47 0ded4f7 832be47 0ded4f7 832be47 0ded4f7 832be47 0ded4f7 832be47 0ded4f7 832be47 0ded4f7 832be47 0ded4f7 832be47 0ded4f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1f4e3fda70>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1f4e3fdb00>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1f4e3fdb90>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1f4e3fdc20>",
"_build": "<function ActorCriticPolicy._build at 0x7f1f4e3fdcb0>",
"forward": "<function ActorCriticPolicy.forward at 0x7f1f4e3fdd40>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1f4e3fddd0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f1f4e3fde60>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1f4e3fdef0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1f4e3fdf80>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1f4e404050>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f1f4e446bd0>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgOqusbU2gilyR2usHxsB8ODwPlP8DnQHtT5Lp5As1Zo0A1d/IgByrGX5WPj+YHrHyLKyh4hXKDJFaQJujZPi4V1aUdvCKfatLNSuXOV/F8XFh/kTtsj/3EHNsPBOQcI9QXOQpibpaN5MrFzzNwuAWH43gGue8qtB4aGC9iN4ahyyQQUeWMFtl6vec/liW0xCoIVjn6KHFx0f4OBQ7AcYCiU628XoVzbf25OyQPkbQCpBfiqhDmP+VlQh22vcwuHLFfllSme2qXBsJeJYMMauSbYWKof1l2Usp6ASxQZkN6RFIgijHmcXwHGmEBkvHk8HOY1QgDnxB32GtsoO4eRw5SQQYbR68BHIaa1LDLuxMY5zgvPRgLbkfwTmoKI/pZDuck50KCuILgWbgA06hUYxdtHRsNHZNZVGA2R+YrVLK+ByOdUglJQ4/cEfKUsLtndII0Tl8d3Tvciv0mpMF7PRGJbQRHyyoFX8oRxsHZoVjnaXMX2eXrH2VMtjRxy0Q6eO6ZUlWenmBBSnhwpGK7GjiZnVkWMKP4EJFBZ8nacUsPMRfaCdp2pAmlmH64yOD7GZftGJmj767SlBz+Ae5C7gtmaSg/YwlQCIHnVUdyfR1c8CsD+/Tv38cdmqv/Z4+lkqrEJGLfbuXJxjRw6BYJqvgOGZ2hf0COPWGlIdtIQtkqi0/txxQnWzgyKVi0VgqoyeboxUHbWAdRBvI9c89H7f+kHrYfKxvYqExYfk8Y4N1ywZPhM2ZOJJeXkrwlaWw349fAP1Luf1kWw5rx9GCTI45yrJP5uFcFLQRGW+lCEG1kKpD40f1EFpiufRTGimBNmfQpLx3XT65nTt4BvoFrhEx5rIpx4H8fpM4EBC4EC+NOLVG3VrZpOAYgmJwl8NIe/KqMwSwVwz1AkLOuHzF14axQBR2fIU1fp3bm2rO2LWTto2BHJfZk7rOIAS1k7i1UBTlA8pUuyRDZXgyXJNF87yTyNTe4e40XFevcT9SW+9xYDgITfkIo78wBu77/dbMKG5NZgCkGEBqCtGnTuBd1raREpsOrjuRA1AazdD7EnK3LVJ3Rc7AL2pHOAeYuFs5EXFSP89xCrEXWdvYox0oF+CPmSY3cHY8kCp+CYXeIX5bAgdiU+fY/SjIm0OwBO/ga5N3FQ6an3PMzrbpk/88mLs7YtO+ySlmkawbJ+TjU2TpTLQHSDJdZRp29BtO3PQaj7eStmKghNZQb9rGFmuLO5JE+DQm5X+NjoB6oD5ngyvsYi4VR0dl7J0Q9uXbVT7K6QM69DvzDYxxH+9s+RRNwU5Bs5BY6zPla0/P9i0n5Eb35P9lalkm0HELa6gWGe+A3TVLC3MV2D39M7WYkSpIxMbzSbit57Wv7f9VoiqTu+XPVyhm0gFAOqQDis8uur6xhKWtQqa9zVAG3IOZw+QYLXb2yUZc2IbIDwurmrU+UBD3hGQBPhE12oHMObpOEln3j556SB9iHWY5SeeedU5MglUIRYs38n8QgjgU0ejBqDgBy9tyd3SNUwXmJo5YQgUnKFSyr+46WIbfVfp+A2psurAUPiT8EXaEVRiZxLhECNM1UmXaUQNjLnc6lGFCvRHCPNvyr5QZlr/j6PfW7GB2tiJ89lg0tAnnWTdXEbQM8lk9rnVHVLCzhNXCPKuJuUVR2PLOQ2G25KqYZMwRCpVcYxP89zxIjLr4sr9wCkILkbinOrrXhGwWir6/i+ZHdHQAsvQxyaSCsS9zLXPoQn0hr0As0TPEFQUCB120czCrbJ4iF9Y+ZGbF3yLblIMl7/n+VE5h2AzVX9Lg4zsK3w1P9jssDDfZawEPEf2TcW/RA6PvQXs8YzGNcE4QXrpZASnDEgnUf8Kfr+e+8ruMmmn7BCZJTOAJ2ODDu6HP3LzAcFlqEOyKCfAJ47wXKTKRWceBB8fhfonSDYRjC9h5pRFCToEgGntnOyfmLVVv3FsLF9eMMbldFQZdUOzWpKrM7ICGhy5r1284pQpKKdNLQ7jWEr7oheDje9FM5syinmuAHJFsfSMX4HDQnx5p74HCJaVBHyG8Ov/0nUan/k9ZeuEY0yAi4XyMyAM7JJ69ALBiJSxm6ln4EptHCwzfrtHkONNFCpBu8Cp0GUiF5YwjJZVIApDX+Z7VJFEdJQz2rO6014hoNVxl/pPnUVFZ7otOw8zt2r6PyNe0S1cqt8eqgAZYUC4RUgZPGLzvC1LnNHydC4rdYWq1tsuM+RbdyT9BOQOQ4UrEh4Je3tIQDaneX8AqI61BahgYOlcqTUmfyvDF31FhcbXWwpt/KdaeXypun8PwuFLMpi3lWQtyrhaHYfN2vF5htIX3v/CG4Gmm9nlGjfFYFxGLJKuDAJyMTMjZSTi4aMfVM7NIBTD3/1Lad20Qo0aAMXl/NOvs+UPT7C53v+EGICa+npcfDOtLLWmyuALM/vg5oe2fozqInBVn76uHy5WRS7ITM6ZJs9NlMeUf2MpCjBvFsl6MAOj6u/95bA83hFyDfIUscOOKNZrloDmZ1dgwWoZhiKZfEDNE6Y4qO+x8EmdTK69npIc7adP/MuVNQJys0/9OXn4XCcjymNbHlwEaUHhMi6jfmdawhec1M5HIYv5MK2mydefzC2HdlpNn0wxT9V+o1LdhBrB+SlF086FRPaWE5CHhJZ13Bu2qHW0KNEuqGxhjoAMb+PUNtIgzKHrw7bDFgOC+fGLILSd/taVljB99y8rIHQQZznD/xyFCKiqpuJYp5zrSRwh/qAyECeN0H83388G0xaxOEet7J9bkS2EOw3aEcY0QTqEDwDLCXMrpGbsoP8G7hPPcmJ7q9D5RnZQjpt6nJICeupoUb53enc7NeylaRFNT1WlW8zpmPhIp//fWw8eshNYvL0uM/vye+ahBvvMxCAdOjrtWb0b+h+3zMUTuUJV9sC0zkclZHeJX29ZWocGCL15R1pyI9CGuFAZyOwFI5E73zkb5uzBO1V9qWjADmvi+chsq8eaE6MFo/5YF952L1VX/ZyStm58RbIqmjBZzCM+csO6iNPyeva4YtMtpCUZN3X322dxFd/XJ6pipFv/67fs7eOnf81obOIiR0s/bYpxnZlRqttk57eZvyL7qv3Ho9n/qWjEEqTscnqA0jBBnT4plChVvdy+XleD8Ccft7igOEFWW9zjyX+Es6RL2bQo4/dIBIDSCrFW28YwbanyT7fcugE4r7HV/sHgdf5J5KUs1SQHeXJg/lGMo6AfJTEK0jHfPDgJ/OyQjS3Z+rICcLcRvbLWjA7iezDKh79W7JGBGK8MgwiCeE2nPCzpXTFmiEbpCmqXTZmBfafnTGd3BgeGA0FYlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": "RandomState(MT19937)"
},
"n_envs": 16,
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": 42,
"action_noise": null,
"start_time": 1651861651.9539485,
"learning_rate": 0.0006,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9DqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAD6QjywtwM/penTvTsCzr7V5Xy8V8kTPQAAAAAAAAAAZr6nO/aEeLpat/050crqNA8FXTpEexS5AACAPwAAgD+ahdu79sRBumvfWDx/e8Iz8X/PumA1WjEAAIA/AACAP03RW72PDly6rvcpM8K58i6OUz25YzTMswAAgD8AAIA/wC2KvX/EOz5oMY4++3yHvj5TNz72B6c8AAAAAAAAAAAGQW2+e/lQP6RrMr4aBRm/v5Sfvt+cmjwAAAAAAAAAALNSs73h2IG6gk85u/XA/DfW6n+6NcPiOQAAgD8AAIA/APD7O2xojLv9M+Q7IWbSPDxSxLzRprA9AACAPwAAgD/NNLu7ss60PzU0Pb7uYAO71X+SO5AxLToAAAAAAAAAAADmP7wPDCA9ZpqUPDlWQ742FPy8jXE2PQAAAAAAAAAAjR3+PZtFbz8LuVi9Ny4Iv9K3Nz5uOfC9AAAAAAAAAABN7FC+8juFP575B7/qbxO/u2iLvtKIWr4AAAAAAAAAAJq5zzquBZO6W7iiuAnPRbPzVSQ6EZG7NwAAgD8AAIA/MwarvOw5mLkBaj65f56ltCM2crqTfmM4AACAPwAAgD8GDw6+eDDDPo6CMD452AG/J9fAvdSsSz0AAAAAAAAAAAAoij32WHG6LptmuIKFTbPITzE7ft6GNwAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVXhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIngq453lzckCUhpRSlIwBbJRNhQGMAXSUR0CMAXOeJ53UdX2UKGgGaAloD0MI4+MTsrMFcUCUhpRSlGgVTR8BaBZHQIwC/En9ehR1fZQoaAZoCWgPQwhI+N7fIL5yQJSGlFKUaBVNDAFoFkdAjAREdmxt53V9lChoBmgJaA9DCEw0SMGT53BAlIaUUpRoFUv0aBZHQIwHd98Z1mt1fZQoaAZoCWgPQwgjhh3G5HxyQJSGlFKUaBVL02gWR0CMCMbQTmGNdX2UKGgGaAloD0MIjZduEkO5cUCUhpRSlGgVS9RoFkdAjAnYubqhUXV9lChoBmgJaA9DCABYHTmSh3JAlIaUUpRoFU2DAWgWR0CMCeiUPhAGdX2UKGgGaAloD0MIECTvHIr0cECUhpRSlGgVS+9oFkdAjAvKMvRJE3V9lChoBmgJaA9DCHGS5o/pknJAlIaUUpRoFU2cAWgWR0CMDNXbM5fddX2UKGgGaAloD0MIcCTQYNOJckCUhpRSlGgVTXgBaBZHQIwM1o11nul1fZQoaAZoCWgPQwha8KKv4GRyQJSGlFKUaBVL42gWR0CMDbedkJ8fdX2UKGgGaAloD0MIHtydtRvtcECUhpRSlGgVS/doFkdAjA4vTPSlWXV9lChoBmgJaA9DCN5Zu+3CGHJAlIaUUpRoFU0jAWgWR0CMDv4TsY2sdX2UKGgGaAloD0MI9dcrLDg2YUCUhpRSlGgVTegDaBZHQIwTAG+sYEZ1fZQoaAZoCWgPQwjVlc/yPHtxQJSGlFKUaBVNTAFoFkdAjBN+wTufEnV9lChoBmgJaA9DCKD5nLudfXFAlIaUUpRoFU0gAWgWR0CMFBrhzeXSdX2UKGgGaAloD0MIyCjPvJypbUCUhpRSlGgVTZsBaBZHQIwUrriVB2R1fZQoaAZoCWgPQwgsZK4Mqn1xQJSGlFKUaBVL/WgWR0CMFoxL0z0pdX2UKGgGaAloD0MIVwqBXCLJcUCUhpRSlGgVS+1oFkdAjBe7VrhzeXV9lChoBmgJaA9DCKaAtP/BP3JAlIaUUpRoFU2XAWgWR0CMGU25QP7OdX2UKGgGaAloD0MIeJyiI3mtcECUhpRSlGgVTXEBaBZHQIwaLZcs1891fZQoaAZoCWgPQwhZ+PpaFyxyQJSGlFKUaBVL4GgWR0CMGu+UQkHEdX2UKGgGaAloD0MIQnqKHOL7cUCUhpRSlGgVS+xoFkdAjBweVcD8tXV9lChoBmgJaA9DCPI/+bu3cXJAlIaUUpRoFU0bAWgWR0CMHYySFGoadX2UKGgGaAloD0MID167tGFEcECUhpRSlGgVS89oFkdAjB9Ryn1nNHV9lChoBmgJaA9DCKIOK9wye3FAlIaUUpRoFU18AWgWR0CMIJfUnXumdX2UKGgGaAloD0MIqTEh5lJvcUCUhpRSlGgVTSkBaBZHQIwg1Xko4Mp1fZQoaAZoCWgPQwi2os1x7q5wQJSGlFKUaBVNJQFoFkdAjCX+zUqhDnV9lChoBmgJaA9DCHnletuMjnBAlIaUUpRoFU0LAWgWR0CMJ1Y5ksjFdX2UKGgGaAloD0MI5E7pYH2QbkCUhpRSlGgVS+JoFkdAjCilQVKwp3V9lChoBmgJaA9DCL2OOGSDanFAlIaUUpRoFU0fAmgWR0CMKl4sVclgdX2UKGgGaAloD0MIYaQXtTtecUCUhpRSlGgVTV0BaBZHQIwqpEUj9n91fZQoaAZoCWgPQwjvqZz2FKZxQJSGlFKUaBVNEwFoFkdAjCsDnmq5snV9lChoBmgJaA9DCHtMpDSbtHBAlIaUUpRoFUvzaBZHQIwr+SB9Tgl1fZQoaAZoCWgPQwinyYy3lR1zQJSGlFKUaBVNBwJoFkdAjC0Lns9jgHV9lChoBmgJaA9DCEmcFVETBXNAlIaUUpRoFUv+aBZHQIwuL+zdDY11fZQoaAZoCWgPQwiwkSQIF7BzQJSGlFKUaBVL+2gWR0CMMR7aZhKEdX2UKGgGaAloD0MIteBFX8HrcECUhpRSlGgVTWYBaBZHQIwyEvoNd7h1fZQoaAZoCWgPQwgcJhqkoKxxQJSGlFKUaBVNoAFoFkdAjDJsx46fa3V9lChoBmgJaA9DCIrJG2Bmi3FAlIaUUpRoFU2QAmgWR0CMNG4xUNrkdX2UKGgGaAloD0MIFoczvxpycECUhpRSlGgVS+9oFkdAjDVlLWZqmHV9lChoBmgJaA9DCJARUOHI5HNAlIaUUpRoFU0BAWgWR0CMN7RtP558dX2UKGgGaAloD0MIvXK9baY+UUCUhpRSlGgVS6FoFkdAjDgUlRgqmXV9lChoBmgJaA9DCPn1Q2zwqnBAlIaUUpRoFUvYaBZHQIw4FGgBcRl1fZQoaAZoCWgPQwjr5XeajHlxQJSGlFKUaBVNbAFoFkdAjDg0eU6gd3V9lChoBmgJaA9DCEm+EkiJi3BAlIaUUpRoFU1UAmgWR0CMOKT6BRQ8dX2UKGgGaAloD0MInDHMCRpccUCUhpRSlGgVS75oFkdAjDiu/UONHnV9lChoBmgJaA9DCKORzyue5XFAlIaUUpRoFU0LAWgWR0CMOTCYTj//dX2UKGgGaAloD0MIa0YGuctHcUCUhpRSlGgVTRkBaBZHQIw7hntfG+91fZQoaAZoCWgPQwi139qJEkNxQJSGlFKUaBVNGQFoFkdAjDxdZ7ojfXV9lChoBmgJaA9DCNOE7Sdje3FAlIaUUpRoFU1WAWgWR0CMPvPl+3H8dX2UKGgGaAloD0MIO1PovEZVcECUhpRSlGgVS/5oFkdAjEE6Yu01InV9lChoBmgJaA9DCLg7a7cdqnFAlIaUUpRoFU0dAWgWR0CMQrfNRm9QdX2UKGgGaAloD0MIZyyazk5oUkCUhpRSlGgVS7toFkdAjELYGMXJo3V9lChoBmgJaA9DCEut9xutVnJAlIaUUpRoFUv2aBZHQIxDvgk1Muh1fZQoaAZoCWgPQwjUKvpD88pxQJSGlFKUaBVNRwFoFkdAjERFg+hXbXV9lChoBmgJaA9DCD21+upqjnBAlIaUUpRoFUvSaBZHQIxESA6Mir11fZQoaAZoCWgPQwjNkgA1NTBtQJSGlFKUaBVL0mgWR0CMSFgm7aqTdX2UKGgGaAloD0MIKXgKuRKgcUCUhpRSlGgVTSABaBZHQIxIzPt2LYR1fZQoaAZoCWgPQwgLfbCMDcBxQJSGlFKUaBVNKwFoFkdAjEoqYAsCk3V9lChoBmgJaA9DCHLhQEiWOnJAlIaUUpRoFU09AWgWR0CMSjs+mm+CdX2UKGgGaAloD0MIPgXAeIbPc0CUhpRSlGgVTTcBaBZHQIxK0m2LHdZ1fZQoaAZoCWgPQwh2pztPPFxxQJSGlFKUaBVNQAFoFkdAjEv0tRNypHV9lChoBmgJaA9DCNeGinE+33BAlIaUUpRoFU2UAWgWR0CMTB6rNnoQdX2UKGgGaAloD0MIzc03ovumcUCUhpRSlGgVS+doFkdAjE5kH+qBE3V9lChoBmgJaA9DCFZinpV0wXNAlIaUUpRoFU1JAWgWR0CMT6bVBlcydX2UKGgGaAloD0MIOGVuvtGIcUCUhpRSlGgVTQEBaBZHQIxRLO7g88t1fZQoaAZoCWgPQwiBBMWPMX1xQJSGlFKUaBVNUQFoFkdAjFIsdkrf+HV9lChoBmgJaA9DCGQGKuOfM3JAlIaUUpRoFU0lAWgWR0CMVEL2pQ1rdX2UKGgGaAloD0MIPx9lxEUac0CUhpRSlGgVS8RoFkdAjFTl8w5/9nV9lChoBmgJaA9DCKtCA7HsI3JAlIaUUpRoFU0sAWgWR0CMVTGgi/widX2UKGgGaAloD0MIZ3xfXGrTckCUhpRSlGgVTQABaBZHQIxWrzZpSJl1fZQoaAZoCWgPQwjc9Gc/kjRwQJSGlFKUaBVNXAFoFkdAjFgO/k/8mHV9lChoBmgJaA9DCMDtCRJbKnJAlIaUUpRoFU0ZAWgWR0CMWJQokRjCdX2UKGgGaAloD0MIpKt0dx2Eb0CUhpRSlGgVTQUBaBZHQIxYsbBGhEl1fZQoaAZoCWgPQwjwoxr2+19zQJSGlFKUaBVNyQNoFkdAjFlEehf0E3V9lChoBmgJaA9DCGouNxhq/3JAlIaUUpRoFU2XAWgWR0CMWdvDP4VRdX2UKGgGaAloD0MI+BxYjlBbckCUhpRSlGgVS/1oFkdAjFoG5MDfWXV9lChoBmgJaA9DCOzdH+8VCnBAlIaUUpRoFU0dAWgWR0CMWmXO4XoDdX2UKGgGaAloD0MIjSeCOI9LckCUhpRSlGgVS+5oFkdAjFtS4vvjO3V9lChoBmgJaA9DCA7Xag87V3JAlIaUUpRoFU0SAWgWR0CMXinMt9QXdX2UKGgGaAloD0MIYJM16mFPckCUhpRSlGgVS/loFkdAjF5Ey1uzhXV9lChoBmgJaA9DCCRFZFhFo29AlIaUUpRoFUvqaBZHQIxg4lF+d9V1fZQoaAZoCWgPQwiCc0aUNodzQJSGlFKUaBVNlgFoFkdAjGFIHcDbJ3V9lChoBmgJaA9DCOULWkiAF3BAlIaUUpRoFU0BAWgWR0CMYmhufmLcdX2UKGgGaAloD0MIBYasbvXdckCUhpRSlGgVS+toFkdAjGKNOVPepHV9lChoBmgJaA9DCH0iT5IulnBAlIaUUpRoFU1RAWgWR0CMY9fa6BiDdX2UKGgGaAloD0MIXeDyWPNycUCUhpRSlGgVS+FoFkdAjGRmuTzNEHV9lChoBmgJaA9DCDArFOl+m3JAlIaUUpRoFU0rAWgWR0CMZ0zUqhDgdX2UKGgGaAloD0MI6INlbGgWc0CUhpRSlGgVTXYBaBZHQIxn7QgLZzx1fZQoaAZoCWgPQwiNCpxsA3hxQJSGlFKUaBVNQAFoFkdAjGkkrXlKb3V9lChoBmgJaA9DCGIuqdpudnFAlIaUUpRoFU1RAWgWR0CMag3CKrJbdX2UKGgGaAloD0MISyAldu2scECUhpRSlGgVS+doFkdAjGrdZ7ojfXV9lChoBmgJaA9DCJRoyePpK3FAlIaUUpRoFU1sAWgWR0CMbQd5IH1OdX2UKGgGaAloD0MIuMzpsthgckCUhpRSlGgVS+doFkdAjG3eUILPU3V9lChoBmgJaA9DCCiZnNpZ1HFAlIaUUpRoFU12AWgWR0CMbmAU+LWJdX2UKGgGaAloD0MICcbBpWMAb0CUhpRSlGgVTQMBaBZHQIxv1R1oxpN1fZQoaAZoCWgPQwi2SrA4nFlxQJSGlFKUaBVL4GgWR0CMcJC5VfeDdX2UKGgGaAloD0MIu2QcI5lacECUhpRSlGgVTRgBaBZHQIxyJvWH1vl1fZQoaAZoCWgPQwjkZrgBn2tzQJSGlFKUaBVNDwFoFkdAjHO55JK8MHVlLg=="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 310,
"n_steps": 2048,
"gamma": 0.999,
"gae_lambda": 0.95,
"ent_coef": 0.0,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 128,
"n_epochs": 10,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
} |