utakumi's picture
End of training
fb6331b verified
---
library_name: transformers
language:
- ja
license: apache-2.0
base_model: rinna/japanese-hubert-base
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_13_0
- generated_from_trainer
datasets:
- common_voice_13_0
metrics:
- wer
model-index:
- name: Hubert-common_voice-phoneme-ctc_zero_infinity
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: MOZILLA-FOUNDATION/COMMON_VOICE_13_0 - JA
type: common_voice_13_0
config: ja
split: test
args: 'Config: ja, Training split: train+validation, Eval split: test'
metrics:
- name: Wer
type: wer
value: 1.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Hubert-common_voice-phoneme-ctc_zero_infinity
This model is a fine-tuned version of [rinna/japanese-hubert-base](https://huggingface.co/rinna/japanese-hubert-base) on the MOZILLA-FOUNDATION/COMMON_VOICE_13_0 - JA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5230
- Wer: 1.0
- Cer: 0.1953
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 12500
- num_epochs: 20.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:|
| No log | 0.2660 | 100 | 18.2381 | 1.1471 | 1.8153 |
| No log | 0.5319 | 200 | 8.1726 | 1.0 | 0.9817 |
| No log | 0.7979 | 300 | 6.9386 | 1.0 | 0.9817 |
| No log | 1.0638 | 400 | 6.2389 | 1.0 | 0.9817 |
| 8.8178 | 1.3298 | 500 | 5.4653 | 1.0 | 0.9817 |
| 8.8178 | 1.5957 | 600 | 4.6745 | 1.0 | 0.9817 |
| 8.8178 | 1.8617 | 700 | 3.9771 | 1.0 | 0.9817 |
| 8.8178 | 2.1277 | 800 | 3.4579 | 1.0 | 0.9817 |
| 8.8178 | 2.3936 | 900 | 3.1745 | 1.0 | 0.9817 |
| 3.6858 | 2.6596 | 1000 | 3.0675 | 1.0 | 0.9817 |
| 3.6858 | 2.9255 | 1100 | 3.0343 | 1.0 | 0.9817 |
| 3.6858 | 3.1915 | 1200 | 3.0102 | 1.0 | 0.9817 |
| 3.6858 | 3.4574 | 1300 | 2.9925 | 1.0 | 0.9817 |
| 3.6858 | 3.7234 | 1400 | 2.5595 | 1.0 | 0.9367 |
| 2.7891 | 3.9894 | 1500 | 1.5432 | 1.0 | 0.3742 |
| 2.7891 | 4.2553 | 1600 | 1.0799 | 1.0 | 0.2972 |
| 2.7891 | 4.5213 | 1700 | 0.8670 | 1.0 | 0.2639 |
| 2.7891 | 4.7872 | 1800 | 0.7350 | 1.0 | 0.2559 |
| 2.7891 | 5.0532 | 1900 | 0.6753 | 1.0 | 0.2468 |
| 0.9179 | 5.3191 | 2000 | 0.6171 | 1.0 | 0.2389 |
| 0.9179 | 5.5851 | 2100 | 0.5866 | 1.0 | 0.2386 |
| 0.9179 | 5.8511 | 2200 | 0.5649 | 1.0 | 0.2389 |
| 0.9179 | 6.1170 | 2300 | 0.5368 | 1.0 | 0.2321 |
| 0.9179 | 6.3830 | 2400 | 0.5225 | 1.0 | 0.2289 |
| 0.563 | 6.6489 | 2500 | 0.5042 | 1.0 | 0.2293 |
| 0.563 | 6.9149 | 2600 | 0.4918 | 1.0 | 0.2247 |
| 0.563 | 7.1809 | 2700 | 0.4881 | 1.0 | 0.2208 |
| 0.563 | 7.4468 | 2800 | 0.4787 | 1.0 | 0.2198 |
| 0.563 | 7.7128 | 2900 | 0.4692 | 1.0 | 0.2181 |
| 0.4453 | 7.9787 | 3000 | 0.4733 | 1.0 | 0.2151 |
| 0.4453 | 8.2447 | 3100 | 0.4585 | 1.0 | 0.2147 |
| 0.4453 | 8.5106 | 3200 | 0.4463 | 1.0 | 0.2116 |
| 0.4453 | 8.7766 | 3300 | 0.4183 | 1.0 | 0.2055 |
| 0.4453 | 9.0426 | 3400 | 0.4308 | 0.9998 | 0.2032 |
| 0.3596 | 9.3085 | 3500 | 0.4070 | 1.0 | 0.2022 |
| 0.3596 | 9.5745 | 3600 | 0.4259 | 1.0 | 0.2024 |
| 0.3596 | 9.8404 | 3700 | 0.4038 | 1.0 | 0.1985 |
| 0.3596 | 10.1064 | 3800 | 0.4272 | 1.0 | 0.1976 |
| 0.3596 | 10.3723 | 3900 | 0.3961 | 0.9998 | 0.1969 |
| 0.2945 | 10.6383 | 4000 | 0.4180 | 1.0 | 0.1943 |
| 0.2945 | 10.9043 | 4100 | 0.3999 | 1.0 | 0.1975 |
| 0.2945 | 11.1702 | 4200 | 0.3879 | 1.0 | 0.1930 |
| 0.2945 | 11.4362 | 4300 | 0.3799 | 1.0 | 0.1918 |
| 0.2945 | 11.7021 | 4400 | 0.3764 | 0.9998 | 0.1927 |
| 0.2605 | 11.9681 | 4500 | 0.3725 | 1.0 | 0.1919 |
| 0.2605 | 12.2340 | 4600 | 0.3910 | 1.0 | 0.1919 |
| 0.2605 | 12.5 | 4700 | 0.3851 | 0.9996 | 0.1908 |
| 0.2605 | 12.7660 | 4800 | 0.4115 | 1.0 | 0.1906 |
| 0.2605 | 13.0319 | 4900 | 0.3779 | 1.0 | 0.1894 |
| 0.2223 | 13.2979 | 5000 | 0.3956 | 1.0 | 0.1904 |
| 0.2223 | 13.5638 | 5100 | 0.4001 | 1.0 | 0.1907 |
| 0.2223 | 13.8298 | 5200 | 0.3891 | 1.0 | 0.1948 |
| 0.2223 | 14.0957 | 5300 | 0.3940 | 1.0 | 0.1902 |
| 0.2223 | 14.3617 | 5400 | 0.4056 | 1.0 | 0.1909 |
| 0.211 | 14.6277 | 5500 | 0.4000 | 0.9998 | 0.1929 |
| 0.211 | 14.8936 | 5600 | 0.3926 | 1.0 | 0.1895 |
| 0.211 | 15.1596 | 5700 | 0.3852 | 0.9998 | 0.1930 |
| 0.211 | 15.4255 | 5800 | 0.3864 | 1.0 | 0.1886 |
| 0.211 | 15.6915 | 5900 | 0.3951 | 0.9998 | 0.1909 |
| 0.1983 | 15.9574 | 6000 | 0.3951 | 1.0 | 0.1882 |
| 0.1983 | 16.2234 | 6100 | 0.4087 | 1.0 | 0.1918 |
| 0.1983 | 16.4894 | 6200 | 0.4150 | 1.0 | 0.1891 |
| 0.1983 | 16.7553 | 6300 | 0.4008 | 0.9998 | 0.1907 |
| 0.1983 | 17.0213 | 6400 | 0.4220 | 1.0 | 0.1943 |
| 0.1829 | 17.2872 | 6500 | 0.4154 | 1.0 | 0.1925 |
| 0.1829 | 17.5532 | 6600 | 0.4482 | 1.0 | 0.1959 |
| 0.1829 | 17.8191 | 6700 | 0.4217 | 0.9998 | 0.1939 |
| 0.1829 | 18.0851 | 6800 | 0.4383 | 0.9998 | 0.1916 |
| 0.1829 | 18.3511 | 6900 | 0.4226 | 1.0 | 0.1926 |
| 0.1757 | 18.6170 | 7000 | 0.4170 | 0.9998 | 0.1916 |
| 0.1757 | 18.8830 | 7100 | 0.4162 | 1.0 | 0.1918 |
| 0.1757 | 19.1489 | 7200 | 0.4350 | 0.9998 | 0.1910 |
| 0.1757 | 19.4149 | 7300 | 0.4403 | 1.0 | 0.2022 |
| 0.1757 | 19.6809 | 7400 | 0.4325 | 0.9998 | 0.1944 |
| 0.1801 | 19.9468 | 7500 | 0.5488 | 1.0 | 0.1977 |
### Framework versions
- Transformers 4.47.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3