gpt-web-bg / README.md
usmiva's picture
Update README.md
c771548
|
raw
history blame
6.17 kB
---
license: cc-by-2.0
language:
- bg
pipeline_tag: text-generation
---
# Model Card for GPT-WEB-BG
<!-- Provide a quick summary of what the model is/does. -->
This model is pre-trained with the causal language modelling objective on a private dataset with web scraped content created at the Bulgarian Academy of Sciences under the [ClaDa-BG Project](https://clada-bg.eu/en/).
The dataset is cleaned and balanced with a specialized procedure to avoid cultural, political, racial and other biases. The procedure is described in the paper dedicated to this model- coming soon!
## Model Details
### Model Description
The model is the first from a series of Large Languege Models for Bulgarian.
- **Developed by:** [Iva Marinova](https://huggingface.co/usmiva)
- **Shared by [optional]:** ClaDa-BG, : National Interdisciplinary Research E-Infrastructure for Bulgarian Language and Cultural Heritage Resources and Technologies integrated within European CLARIN and DARIAH infrastructures
- **Model type:** GPT-2
- **Language(s) (NLP):** Bulgarian
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** Marinova et. al. 2023 - link to be added
- **Demo [optional]:** [More Information Needed]
## Uses
The model is trained on the causal language modeling objective and can be used to generate content based on textual input. It can be further finetuned for specific NLP tasks in the online media domain such as Event Extraction, Relation Extracation, Named Entity Recognition, etc.
This model is intended for use from researchers and practitioners in the NLP field.
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
```python
from transformers import pipeline, set_seed
gpt_web_bg = pipeline('text-generation', model='/usmiva/gpt_web_bg', max_length=50, num_beams=3, temperature=0.8)
set_seed(42)
```
```python
gpt_web_bg("По професия той е ")
```
[{'generated_text': 'По професия той е строителен работник, който е �'}]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]