File size: 9,263 Bytes
19b8852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

"""
Copyright [2022] [Paul-Edouard Sarlin and Philipp Lindenberger]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

3D visualization based on plotly.
Works for a small number of points and cameras, might be slow otherwise.

1) Initialize a figure with `init_figure`
2) Add 3D points, camera frustums, or both as a pycolmap.Reconstruction

Written by Paul-Edouard Sarlin and Philipp Lindenberger.
"""
# Slightly modified by Dmytro Mishkin

from typing import Optional
import numpy as np
import pycolmap
import plotly.graph_objects as go


### Some helper functions for geometry
def qvec2rotmat(qvec):
    return np.array([
        [1 - 2 * qvec[2]**2 - 2 * qvec[3]**2,
         2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3],
         2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2]],
        [2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3],
         1 - 2 * qvec[1]**2 - 2 * qvec[3]**2,
         2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1]],
        [2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2],
         2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1],
         1 - 2 * qvec[1]**2 - 2 * qvec[2]**2]])


def to_homogeneous(points):
    pad = np.ones((points.shape[:-1]+(1,)), dtype=points.dtype)
    return np.concatenate([points, pad], axis=-1)

def t_to_proj_center(qvec, tvec):
    Rr = qvec2rotmat(qvec)
    tt = (-Rr.T) @ tvec
    return tt

def calib(params):
    out = np.eye(3)
    if len(params) == 3:
        out[0,0] = params[0]
        out[1,1] = params[0]
        out[0,2] = params[1]
        out[1,2] = params[2]
    else:
        out[0,0] = params[0]
        out[1,1] = params[1]
        out[0,2] = params[2]
        out[1,2] = params[3]
    return out


### Plotting functions

def init_figure(height: int = 800) -> go.Figure:
    """Initialize a 3D figure."""
    fig = go.Figure()
    axes = dict(
        visible=False,
        showbackground=False,
        showgrid=False,
        showline=False,
        showticklabels=True,
        autorange=True,
    )
    fig.update_layout(
        template="plotly_dark",
        height=height,
        scene_camera=dict(
            eye=dict(x=0., y=-.1, z=-2),
            up=dict(x=0, y=-1., z=0),
            projection=dict(type="orthographic")),
        scene=dict(
            xaxis=axes,
            yaxis=axes,
            zaxis=axes,
            aspectmode='data',
            dragmode='orbit',
        ),
        margin=dict(l=0, r=0, b=0, t=0, pad=0),
        legend=dict(
            orientation="h",
            yanchor="top",
            y=0.99,
            xanchor="left",
            x=0.1
        ),
    )
    return fig


def plot_lines_3d(
        fig: go.Figure,
        pts: np.ndarray,
        color: str = 'rgba(255, 255, 255, 1)',
        ps: int = 2,
        colorscale: Optional[str] = None,
        name: Optional[str] = None):
    """Plot a set of 3D points."""
    x = pts[..., 0]
    y = pts[..., 1]
    z = pts[..., 2]
    traces = [go.Scatter3d(x=x1, y=y1, z=z1,
                        mode='lines',
                        line=dict(color=color, width=2)) for x1, y1, z1 in zip(x,y,z)]
    for t in traces:
        fig.add_trace(t)
    fig.update_traces(showlegend=False)


def plot_points(
        fig: go.Figure,
        pts: np.ndarray,
        color: str = 'rgba(255, 0, 0, 1)',
        ps: int = 2,
        colorscale: Optional[str] = None,
        name: Optional[str] = None):
    """Plot a set of 3D points."""
    x, y, z = pts.T
    tr = go.Scatter3d(
        x=x, y=y, z=z, mode='markers', name=name, legendgroup=name,
        marker=dict(
            size=ps, color=color, line_width=0.0, colorscale=colorscale))
    fig.add_trace(tr)

def plot_camera(
        fig: go.Figure,
        R: np.ndarray,
        t: np.ndarray,
        K: np.ndarray,
        color: str = 'rgb(0, 0, 255)',
        name: Optional[str] = None,
        legendgroup: Optional[str] = None,
        size: float = 1.0):
    """Plot a camera frustum from pose and intrinsic matrix."""
    W, H = K[0, 2]*2, K[1, 2]*2
    corners = np.array([[0, 0], [W, 0], [W, H], [0, H], [0, 0]])
    if size is not None:
        image_extent = max(size * W / 1024.0, size * H / 1024.0)
        world_extent = max(W, H) / (K[0, 0] + K[1, 1]) / 0.5
        scale = 0.5 * image_extent / world_extent
    else:
        scale = 1.0
    corners = to_homogeneous(corners) @ np.linalg.inv(K).T
    corners = (corners / 2 * scale) @ R.T + t

    x, y, z = corners.T
    rect = go.Scatter3d(
        x=x, y=y, z=z, line=dict(color=color), legendgroup=legendgroup,
        name=name, marker=dict(size=0.0001), showlegend=False)
    fig.add_trace(rect)

    x, y, z = np.concatenate(([t], corners)).T
    i = [0, 0, 0, 0]
    j = [1, 2, 3, 4]
    k = [2, 3, 4, 1]

    pyramid = go.Mesh3d(
        x=x, y=y, z=z, color=color, i=i, j=j, k=k,
        legendgroup=legendgroup, name=name, showlegend=False)
    fig.add_trace(pyramid)
    triangles = np.vstack((i, j, k)).T
    vertices = np.concatenate(([t], corners))
    tri_points = np.array([
        vertices[i] for i in triangles.reshape(-1)
    ])

    x, y, z = tri_points.T
    pyramid = go.Scatter3d(
        x=x, y=y, z=z, mode='lines', legendgroup=legendgroup,
        name=name, line=dict(color=color, width=1), showlegend=False)
    fig.add_trace(pyramid)


def plot_camera_colmap(
        fig: go.Figure,
        image: pycolmap.Image,
        camera: pycolmap.Camera,
        name: Optional[str] = None,
        **kwargs):
    """Plot a camera frustum from PyCOLMAP objects"""
    intr = calib(camera.params)
    if intr[0][0] > 10000:
        print("Bad camera")
        return
    plot_camera(
        fig,
        qvec2rotmat(image.qvec).T,
        t_to_proj_center(image.qvec, image.tvec),
        intr,#calibration_matrix(),
        name=name or str(image.id),
        **kwargs)


def plot_cameras(
        fig: go.Figure,
        reconstruction,#: pycolmap.Reconstruction,
        **kwargs):
    """Plot a camera as a cone with camera frustum."""
    for image_id, image in reconstruction["images"].items():
        plot_camera_colmap(
            fig, image, reconstruction["cameras"][image.camera_id], **kwargs)


def plot_reconstruction(
        fig: go.Figure,
        rec,
        color: str = 'rgb(0, 0, 255)',
        name: Optional[str] = None,
        points: bool = True,
        cameras: bool = True,
        cs: float = 1.0,
        single_color_points=False,
        camera_color='rgba(0, 255, 0, 0.5)'):
    # rec is result of loading reconstruction from "read_write_colmap.py"
    # Filter outliers
    xyzs = []
    rgbs = []
    for k, p3D in rec['points'].items():
        xyzs.append(p3D.xyz)
        rgbs.append(p3D.rgb)

    if points:
        plot_points(fig, np.array(xyzs), color=color if single_color_points else np.array(rgbs), ps=1, name=name)
    if cameras:
        plot_cameras(fig, rec, color=camera_color, legendgroup=name, size=cs)


def plot_pointcloud(
        fig: go.Figure,
        pts: np.ndarray,
        colors: np.ndarray,
        ps: int = 2,
        name: Optional[str] = None):
    """Plot a set of 3D points."""
    plot_points(fig, np.array(pts), color=colors, ps=ps, name=name)


def plot_triangle_mesh(
        fig: go.Figure,
        vert: np.ndarray,
        colors: np.ndarray,
        triangles: np.ndarray,
        name: Optional[str] = None):
    """Plot a triangle mesh."""
    tr = go.Mesh3d(
        x=vert[:,0],
        y=vert[:,1],
        z=vert[:,2],
        vertexcolor = np.clip(255*colors, 0, 255),
        # i, j and k give the vertices of triangles
        # here we represent the 4 triangles of the tetrahedron surface
        i=triangles[:,0],
        j=triangles[:,1],
        k=triangles[:,2],
        name=name,
        showscale=False
    )
    fig.add_trace(tr)

def plot_estimate_and_gt(pred_vertices, pred_connections, gt_vertices=None, gt_connections=None):
    fig3d = init_figure()
    c1 = (30, 20, 255)
    img_color = [c1 for _ in range(len(pred_vertices))]
    plot_points(fig3d, pred_vertices, color = img_color, ps = 10)  
    lines = []
    for c in pred_connections:
        v1 = pred_vertices[c[0]]
        v2 = pred_vertices[c[1]]
        lines.append(np.stack([v1, v2], axis=0))
    plot_lines_3d(fig3d, np.array(lines), img_color, ps=4)  
    if gt_vertices is not None:
        c2 = (30, 255, 20)
        img_color2 = [c2 for _ in range(len(gt_vertices))]
        plot_points(fig3d, gt_vertices, color = img_color2, ps = 10)  
        if gt_connections is not None:
            gt_lines = []
            for c in gt_connections:
                v1 = gt_vertices[c[0]]
                v2 = gt_vertices[c[1]]
                gt_lines.append(np.stack([v1, v2], axis=0))
        plot_lines_3d(fig3d, np.array(gt_lines), img_color2, ps=4)        
    fig3d.show()
    return fig3d