|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Inference-only Solar model compatible with HuggingFace weights.""" |
|
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from vllm.attention import Attention, AttentionMetadata |
|
from vllm.config import CacheConfig, LoRAConfig |
|
from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank, |
|
get_tensor_model_parallel_world_size) |
|
from vllm.model_executor.layers.activation import SiluAndMul |
|
from vllm.model_executor.layers.layernorm import RMSNorm |
|
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear, |
|
QKVParallelLinear, |
|
RowParallelLinear) |
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor |
|
from vllm.model_executor.layers.quantization.base_config import ( |
|
QuantizationConfig) |
|
from vllm.model_executor.layers.quantization.compressed_tensors.utils import ( |
|
get_compressed_tensors_cache_scale) |
|
from vllm.model_executor.layers.rotary_embedding import get_rope |
|
from vllm.model_executor.layers.sampler import Sampler |
|
from vllm.model_executor.layers.vocab_parallel_embedding import ( |
|
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding) |
|
from vllm.model_executor.model_loader.weight_utils import ( |
|
default_weight_loader, kv_cache_scales_loader, maybe_remap_kv_scale_name) |
|
from vllm.model_executor.sampling_metadata import SamplingMetadata |
|
from vllm.sequence import IntermediateTensors, SamplerOutput |
|
from vllm.utils import is_hip |
|
|
|
from vllm.model_executor.models.interfaces import SupportsLoRA |
|
from vllm.model_executor.models.utils import PPMissingLayer, is_pp_missing_parameter, make_layers |
|
|
|
class SolarMLP(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
intermediate_size: int, |
|
hidden_act: str, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
bias: bool = False, |
|
prefix: str = "", |
|
) -> None: |
|
super().__init__() |
|
self.gate_up_proj = MergedColumnParallelLinear( |
|
input_size=hidden_size, |
|
output_sizes=[intermediate_size] * 2, |
|
bias=bias, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.gate_up_proj") |
|
self.down_proj = RowParallelLinear(input_size=intermediate_size, |
|
output_size=hidden_size, |
|
bias=bias, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.down_proj") |
|
if hidden_act != "silu": |
|
raise ValueError(f"Unsupported activation: {hidden_act}. " |
|
"Only silu is supported for now.") |
|
self.act_fn = SiluAndMul() |
|
|
|
def forward(self, x): |
|
gate_up, _ = self.gate_up_proj(x) |
|
x = self.act_fn(gate_up) |
|
x, _ = self.down_proj(x) |
|
return x |
|
|
|
|
|
class SolarAttention(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
config, |
|
hidden_size: int, |
|
num_heads: int, |
|
num_kv_heads: int, |
|
rope_theta: float = 10000, |
|
rope_scaling: Optional[Dict[str, Any]] = None, |
|
max_position_embeddings: int = 8192, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
bias: bool = False, |
|
cache_config: Optional[CacheConfig] = None, |
|
prefix: str = "", |
|
) -> None: |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
tp_size = get_tensor_model_parallel_world_size() |
|
self.total_num_heads = num_heads |
|
assert self.total_num_heads % tp_size == 0 |
|
self.num_heads = self.total_num_heads // tp_size |
|
self.total_num_kv_heads = num_kv_heads |
|
if self.total_num_kv_heads >= tp_size: |
|
|
|
|
|
assert self.total_num_kv_heads % tp_size == 0 |
|
else: |
|
|
|
|
|
assert tp_size % self.total_num_kv_heads == 0 |
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) |
|
|
|
self.head_dim = getattr(config, "head_dim", |
|
self.hidden_size // self.total_num_heads) |
|
self.q_size = self.num_heads * self.head_dim |
|
self.kv_size = self.num_kv_heads * self.head_dim |
|
self.scaling = self.head_dim**-0.5 |
|
self.rope_theta = rope_theta |
|
self.max_position_embeddings = max_position_embeddings |
|
|
|
self.qkv_proj = QKVParallelLinear( |
|
hidden_size=hidden_size, |
|
head_size=self.head_dim, |
|
total_num_heads=self.total_num_heads, |
|
total_num_kv_heads=self.total_num_kv_heads, |
|
bias=bias, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.qkv_proj", |
|
) |
|
self.o_proj = RowParallelLinear( |
|
input_size=self.total_num_heads * self.head_dim, |
|
output_size=hidden_size, |
|
bias=bias, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.o_proj", |
|
) |
|
|
|
self.rotary_emb = get_rope( |
|
self.head_dim, |
|
rotary_dim=self.head_dim, |
|
max_position=max_position_embeddings, |
|
base=rope_theta, |
|
rope_scaling=rope_scaling, |
|
) |
|
self.attn = Attention(self.num_heads, |
|
self.head_dim, |
|
self.scaling, |
|
num_kv_heads=self.num_kv_heads, |
|
cache_config=cache_config, |
|
quant_config=quant_config) |
|
|
|
def forward( |
|
self, |
|
positions: torch.Tensor, |
|
hidden_states: torch.Tensor, |
|
kv_cache: torch.Tensor, |
|
attn_metadata: AttentionMetadata, |
|
) -> torch.Tensor: |
|
qkv, _ = self.qkv_proj(hidden_states) |
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) |
|
q, k = self.rotary_emb(positions, q, k) |
|
attn_output = self.attn(q, k, v, kv_cache, attn_metadata) |
|
output, _ = self.o_proj(attn_output) |
|
return output |
|
|
|
|
|
class SolarDecoderLayer(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
config, |
|
cache_config: Optional[CacheConfig] = None, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
prefix: str = "", |
|
) -> None: |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
rope_theta = getattr(config, "rope_theta", 10000) |
|
rope_scaling = getattr(config, "rope_scaling", None) |
|
if rope_scaling is not None and getattr( |
|
config, "original_max_position_embeddings", None): |
|
rope_scaling["original_max_position_embeddings"] = ( |
|
config.original_max_position_embeddings) |
|
max_position_embeddings = getattr(config, "max_position_embeddings", |
|
8192) |
|
|
|
|
|
attention_bias = getattr(config, "attention_bias", False) or getattr( |
|
config, "bias", False) |
|
self.self_attn = SolarAttention( |
|
config=config, |
|
hidden_size=self.hidden_size, |
|
num_heads=config.num_attention_heads, |
|
num_kv_heads=getattr(config, "num_key_value_heads", |
|
config.num_attention_heads), |
|
rope_theta=rope_theta, |
|
rope_scaling=rope_scaling, |
|
max_position_embeddings=max_position_embeddings, |
|
quant_config=quant_config, |
|
bias=attention_bias, |
|
cache_config=cache_config, |
|
prefix=f"{prefix}.self_attn", |
|
) |
|
self.mlp = SolarMLP( |
|
hidden_size=self.hidden_size, |
|
intermediate_size=config.intermediate_size, |
|
hidden_act=config.hidden_act, |
|
quant_config=quant_config, |
|
bias=getattr(config, "mlp_bias", False), |
|
prefix=f"{prefix}.mlp", |
|
) |
|
self.input_layernorm = RMSNorm(config.hidden_size, |
|
eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = RMSNorm(config.hidden_size, |
|
eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
positions: torch.Tensor, |
|
hidden_states: torch.Tensor, |
|
kv_cache: torch.Tensor, |
|
attn_metadata: AttentionMetadata, |
|
residual: Optional[torch.Tensor], |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
|
if residual is None: |
|
residual = hidden_states |
|
hidden_states = self.input_layernorm(hidden_states) |
|
else: |
|
hidden_states, residual = self.input_layernorm( |
|
hidden_states, residual) |
|
hidden_states = self.self_attn( |
|
positions=positions, |
|
hidden_states=hidden_states, |
|
kv_cache=kv_cache, |
|
attn_metadata=attn_metadata, |
|
) |
|
|
|
|
|
hidden_states, residual = self.post_attention_layernorm( |
|
hidden_states, residual) |
|
hidden_states = self.mlp(hidden_states) |
|
return hidden_states, residual |
|
|
|
|
|
class SolarModel(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
config, |
|
cache_config: Optional[CacheConfig] = None, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
lora_config: Optional[LoRAConfig] = None, |
|
prefix: str = "", |
|
) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.padding_idx = config.pad_token_id |
|
lora_vocab = (lora_config.lora_extra_vocab_size * |
|
(lora_config.max_loras or 1)) if lora_config else 0 |
|
self.vocab_size = config.vocab_size + lora_vocab |
|
self.org_vocab_size = config.vocab_size |
|
if get_pp_group().is_first_rank or (config.tie_word_embeddings |
|
and get_pp_group().is_last_rank): |
|
self.embed_tokens = VocabParallelEmbedding( |
|
self.vocab_size, |
|
config.hidden_size, |
|
org_num_embeddings=config.vocab_size, |
|
) |
|
else: |
|
self.embed_tokens = PPMissingLayer() |
|
self.start_layer, self.end_layer, self.layers = make_layers( |
|
config.num_hidden_layers, |
|
lambda prefix: SolarDecoderLayer(config=config, |
|
cache_config=cache_config, |
|
quant_config=quant_config, |
|
prefix=prefix), |
|
prefix=f"{prefix}.layers") |
|
if get_pp_group().is_last_rank: |
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
else: |
|
self.norm = PPMissingLayer() |
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: |
|
return self.embed_tokens(input_ids) |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor], |
|
positions: torch.Tensor, |
|
kv_caches: List[torch.Tensor], |
|
attn_metadata: AttentionMetadata, |
|
intermediate_tensors: Optional[IntermediateTensors], |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
) -> Union[torch.Tensor, IntermediateTensors]: |
|
if get_pp_group().is_first_rank: |
|
if inputs_embeds is not None: |
|
hidden_states = inputs_embeds |
|
else: |
|
hidden_states = self.get_input_embeddings(input_ids) |
|
residual = None |
|
else: |
|
assert intermediate_tensors is not None |
|
hidden_states = intermediate_tensors["hidden_states"] |
|
residual = intermediate_tensors["residual"] |
|
|
|
bskcn_h_1 = None |
|
bskcn_h_2 = None |
|
bskcn_r_1 = None |
|
bskcn_r_2 = None |
|
bskcn_tv = self.config.bskcn_tv[0] if self.training else self.config.bskcn_tv[1] |
|
|
|
for i in range(self.start_layer, self.end_layer): |
|
if i in self.config.bskcn_1: |
|
bskcn_h_1 = hidden_states.clone() |
|
bskcn_r_1 = residual.clone() |
|
if i in self.config.bskcn_2: |
|
bskcn_h_2 = hidden_states.clone() |
|
bskcn_r_2 = residual.clone() |
|
if i in self.config.bskcn_3: |
|
hidden_states = bskcn_h_1*bskcn_tv + hidden_states*(1-bskcn_tv) |
|
residual = bskcn_r_1*bskcn_tv + residual*(1-bskcn_tv) |
|
if i in self.config.bskcn_4: |
|
hidden_states = bskcn_h_2*bskcn_tv + hidden_states*(1-bskcn_tv) |
|
residual = bskcn_r_2*bskcn_tv + residual*(1-bskcn_tv) |
|
layer = self.layers[i] |
|
hidden_states, residual = layer( |
|
positions, |
|
hidden_states, |
|
kv_caches[i - self.start_layer], |
|
attn_metadata, |
|
residual, |
|
) |
|
|
|
if not get_pp_group().is_last_rank: |
|
return IntermediateTensors({ |
|
"hidden_states": hidden_states, |
|
"residual": residual |
|
}) |
|
|
|
hidden_states, _ = self.norm(hidden_states, residual) |
|
return hidden_states |
|
|
|
|
|
class SolarForCausalLM(nn.Module, SupportsLoRA): |
|
packed_modules_mapping = { |
|
"qkv_proj": [ |
|
"q_proj", |
|
"k_proj", |
|
"v_proj", |
|
], |
|
"gate_up_proj": [ |
|
"gate_proj", |
|
"up_proj", |
|
], |
|
} |
|
|
|
|
|
supported_lora_modules = [ |
|
"qkv_proj", "o_proj", "gate_up_proj", "down_proj", "embed_tokens", |
|
"lm_head" |
|
] |
|
embedding_modules = { |
|
"embed_tokens": "input_embeddings", |
|
"lm_head": "output_embeddings", |
|
} |
|
embedding_padding_modules = ["lm_head"] |
|
bitsandbytes_stacked_params_mapping = { |
|
|
|
"q_proj": ("qkv_proj", 0), |
|
"k_proj": ("qkv_proj", 1), |
|
"v_proj": ("qkv_proj", 2), |
|
"gate_proj": ("gate_up_proj", 0), |
|
"up_proj": ("gate_up_proj", 1), |
|
} |
|
|
|
def __init__( |
|
self, |
|
config, |
|
cache_config: Optional[CacheConfig] = None, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
lora_config: Optional[LoRAConfig] = None, |
|
) -> None: |
|
super().__init__() |
|
|
|
self.config = config |
|
self.lora_config = lora_config |
|
|
|
self.model = SolarModel(config, |
|
cache_config, |
|
quant_config, |
|
lora_config=lora_config, |
|
prefix="model") |
|
if get_pp_group().is_last_rank: |
|
self.unpadded_vocab_size = config.vocab_size |
|
if lora_config: |
|
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size |
|
self.lm_head = ParallelLMHead( |
|
self.unpadded_vocab_size, |
|
config.hidden_size, |
|
org_num_embeddings=config.vocab_size, |
|
padding_size=DEFAULT_VOCAB_PADDING_SIZE |
|
|
|
|
|
if not lora_config else lora_config.lora_vocab_padding_size, |
|
quant_config=quant_config, |
|
) |
|
if config.tie_word_embeddings: |
|
self.lm_head.weight = self.model.embed_tokens.weight |
|
|
|
logit_scale = getattr(config, "logit_scale", 1.0) |
|
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size, |
|
config.vocab_size, |
|
logit_scale) |
|
self.sampler = Sampler() |
|
else: |
|
self.lm_head = PPMissingLayer() |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
positions: torch.Tensor, |
|
kv_caches: List[torch.Tensor], |
|
attn_metadata: AttentionMetadata, |
|
intermediate_tensors: Optional[IntermediateTensors] = None, |
|
) -> Union[torch.Tensor, IntermediateTensors]: |
|
model_output = self.model(input_ids, positions, kv_caches, |
|
attn_metadata, intermediate_tensors) |
|
return model_output |
|
|
|
def compute_logits(self, hidden_states: torch.Tensor, |
|
sampling_metadata: SamplingMetadata) -> torch.Tensor: |
|
logits = self.logits_processor(self.lm_head, hidden_states, |
|
sampling_metadata) |
|
return logits |
|
|
|
def sample( |
|
self, |
|
logits: torch.Tensor, |
|
sampling_metadata: SamplingMetadata, |
|
) -> Optional[SamplerOutput]: |
|
next_tokens = self.sampler(logits, sampling_metadata) |
|
return next_tokens |
|
|
|
def make_empty_intermediate_tensors( |
|
self, batch_size: int, dtype: torch.dtype, |
|
device: torch.device) -> IntermediateTensors: |
|
return IntermediateTensors({ |
|
"hidden_states": |
|
torch.zeros((batch_size, self.config.hidden_size), |
|
dtype=dtype, |
|
device=device), |
|
"residual": |
|
torch.zeros((batch_size, self.config.hidden_size), |
|
dtype=dtype, |
|
device=device), |
|
}) |
|
|
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): |
|
stacked_params_mapping = [ |
|
|
|
(".qkv_proj", ".q_proj", "q"), |
|
(".qkv_proj", ".k_proj", "k"), |
|
(".qkv_proj", ".v_proj", "v"), |
|
(".gate_up_proj", ".gate_proj", 0), |
|
(".gate_up_proj", ".up_proj", 1), |
|
] |
|
params_dict = dict(self.named_parameters()) |
|
for name, loaded_weight in weights: |
|
if "rotary_emb.inv_freq" in name: |
|
continue |
|
if ("rotary_emb.cos_cached" in name |
|
or "rotary_emb.sin_cached" in name): |
|
|
|
|
|
continue |
|
if scale_name := get_compressed_tensors_cache_scale(name): |
|
|
|
param = params_dict[scale_name] |
|
weight_loader = getattr(param, "weight_loader", |
|
default_weight_loader) |
|
loaded_weight = loaded_weight[0] |
|
weight_loader(param, loaded_weight) |
|
continue |
|
for (param_name, weight_name, shard_id) in stacked_params_mapping: |
|
if weight_name not in name: |
|
continue |
|
name = name.replace(weight_name, param_name) |
|
|
|
if name.endswith(".bias") and name not in params_dict: |
|
continue |
|
|
|
if is_pp_missing_parameter(name, self): |
|
continue |
|
|
|
param = params_dict[name] |
|
weight_loader = param.weight_loader |
|
weight_loader(param, loaded_weight, shard_id) |
|
|
|
break |
|
else: |
|
|
|
if name.endswith(".bias") and name not in params_dict: |
|
continue |
|
|
|
name = maybe_remap_kv_scale_name(name, params_dict) |
|
if name is None: |
|
continue |
|
|
|
if is_pp_missing_parameter(name, self): |
|
continue |
|
|
|
param = params_dict[name] |
|
weight_loader = getattr(param, "weight_loader", |
|
default_weight_loader) |
|
weight_loader(param, loaded_weight) |
|
|
|
|
|
|
|
|
|
def load_kv_cache_scales(self, quantization_param_path: str) -> None: |
|
tp_size = get_tensor_model_parallel_world_size() |
|
tp_rank = get_tensor_model_parallel_rank() |
|
for layer_idx, scaling_factor in kv_cache_scales_loader( |
|
quantization_param_path, tp_rank, tp_size, |
|
self.config.num_hidden_layers, |
|
self.config.__class__.model_type): |
|
if not isinstance(self.model.layers[layer_idx], nn.Identity): |
|
layer_self_attn = self.model.layers[layer_idx].self_attn |
|
|
|
if is_hip(): |
|
|
|
|
|
|
|
|
|
scaling_factor *= 2 |
|
if hasattr(layer_self_attn, "kv_scale"): |
|
layer_self_attn.attn._kv_scale = scaling_factor |
|
else: |
|
raise RuntimeError("Self attention has no KV cache scaling " |
|
"factor attribute!") |
|
|