|
import torch |
|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("upstage/SOLAR-10.7B-Instruct-v1.0") |
|
model = AutoModelForCausalLM.from_pretrained("upstage/SOLAR-10.7B-Instruct-v1.0") |
|
|
|
def generate_response(prompt): |
|
conversation = [{'role': 'user', 'content': prompt}] |
|
prompt = tokenizer.apply_chat_template(conversation, tokenizer=False, add_generation_prompt=True) |
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
outputs = model.generate(**inputs, use_cache=True, max_length=4096) |
|
outputs_text = tokenizer.decode(outputs[0]) |
|
return outputs_text |
|
|
|
iface = gr.Interface(fn=generate_response, inputs="text", outputs="text") |
|
iface.launch() |
|
|