charanhu's picture
Create app.py
5b8315e
raw
history blame
750 Bytes
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("upstage/SOLAR-10.7B-Instruct-v1.0")
model = AutoModelForCausalLM.from_pretrained("upstage/SOLAR-10.7B-Instruct-v1.0")
def generate_response(prompt):
conversation = [{'role': 'user', 'content': prompt}]
prompt = tokenizer.apply_chat_template(conversation, tokenizer=False, add_generation_prompt=True)
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, use_cache=True, max_length=4096)
outputs_text = tokenizer.decode(outputs[0])
return outputs_text
iface = gr.Interface(fn=generate_response, inputs="text", outputs="text")
iface.launch()