shimmyshimmer commited on
Commit
7338b94
1 Parent(s): b0593e6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +118 -161
README.md CHANGED
@@ -1,199 +1,156 @@
1
  ---
 
 
 
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
 
 
 
 
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
 
 
 
 
 
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
 
 
 
 
 
 
 
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
 
57
 
58
- ## Bias, Risks, and Limitations
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
61
 
62
- [More Information Needed]
 
 
 
 
 
 
 
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
 
76
- ## Training Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
78
- ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ base_model: llava-hf/llava-v1.6-mistral-7b-hf
3
+ language:
4
+ - en
5
  library_name: transformers
6
+ pipeline_tag: image-text-to-text
7
+ license: apache-2.0
8
+ tags:
9
+ - multimodal
10
+ - llava
11
+ - vision
12
+ - unsloth
13
+ - mistral
14
  ---
15
 
16
+ # Finetune Llama 3.2, Qwen 2.5, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!
17
 
18
+ We have a free Google Colab Tesla T4 notebook for Llava 1.6 (7B) here: https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing
19
 
20
+ And a free notebook for [Llama 3.2 Vision (11B) here](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing)
21
 
22
+ [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth)
23
+ [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
24
 
 
25
 
26
+ # unsloth/llava-v1.6-mistral-7b-hf-bnb-4bit
27
+ For more details on the model, please go to the original [model card](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf)
28
 
29
+ ## Finetune for Free
30
 
31
+ All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
32
 
33
+ | Unsloth supports | Free Notebooks | Performance | Memory use |
34
+ |-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
35
+ | **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less |
36
+ | **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2x faster | 40% less |
37
+ | **Qwen2 VL (7B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 1.8x faster | 40% less |
38
+ | **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Kose-ucXO1IBaZq5BvbwWieuubP7hxvQ?usp=sharing) | 2x faster | 60% less |
39
+ | **Llama-3.1 (8B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less |
40
+ | **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less |
41
+ | **Gemma 2 (9B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2.4x faster | 58% less |
42
+ | **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less |
43
+ | **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less |
44
 
45
+ [<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="200"/>](https://docs.unsloth.ai)
46
 
47
+ - This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates.
48
+ - This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
49
+ - \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
50
 
 
 
 
51
 
52
+ # LLaVa-Next, leveraging [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) as LLM
53
 
54
+ The LLaVA-NeXT model was proposed in [LLaVA-NeXT: Improved reasoning, OCR, and world knowledge](https://llava-vl.github.io/blog/2024-01-30-llava-next/) by Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, Yong Jae Lee. LLaVa-NeXT (also called LLaVa-1.6) improves upon [LLaVa-1.5](https://huggingface.co/transformers/main/model_doc/llava.html) by increasing the input image resolution and training on an improved visual instruction tuning dataset to improve OCR and common sense reasoning.
55
 
56
+ Disclaimer: The team releasing LLaVa-NeXT did not write a model card for this model so this model card has been written by the Hugging Face team.
57
 
58
+ ## Model description
59
 
60
+ LLaVa combines a pre-trained large language model with a pre-trained vision encoder for multimodal chatbot use cases. LLaVA 1.6 improves on LLaVA 1.5 BY:
61
+ - Using [Mistral-7B](https://mistral.ai/news/announcing-mistral-7b/) (for this checkpoint) and [Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B) which has better commercial licenses,
62
+ and bilingual support
63
+ - More diverse and high quality data mixture
64
+ - Dynamic high resolution
65
+
66
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62441d1d9fdefb55a0b7d12c/FPshq08TKYD0e-qwPLDVO.png)
67
 
68
+ ## Intended uses & limitations
69
 
70
+ You can use the raw model for tasks like image captioning, visual question answering, multimodal chatbot use cases. See the [model hub](https://huggingface.co/models?search=llava-hf) to look for
71
+ other versions on a task that interests you.
72
 
73
+ ### How to use
74
 
75
+ Here's the prompt template for this model:
76
+ ```
77
+ "[INST] <image>\nWhat is shown in this image? [/INST]"
78
+ ```
79
+ You can load and use the model like following:
80
+ ```python
81
+ from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
82
+ import torch
83
+ from PIL import Image
84
+ import requests
85
 
86
+ processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
87
 
88
+ model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16, low_cpu_mem_usage=True)
89
+ model.to("cuda:0")
90
 
91
+ # prepare image and text prompt, using the appropriate prompt template
92
+ url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
93
+ image = Image.open(requests.get(url, stream=True).raw)
94
 
95
+ # Define a chat history and use `apply_chat_template` to get correctly formatted prompt
96
+ # Each value in "content" has to be a list of dicts with types ("text", "image")
97
+ conversation = [
98
+ {
99
 
100
+ "role": "user",
101
+ "content": [
102
+ {"type": "text", "text": "What is shown in this image?"},
103
+ {"type": "image"},
104
+ ],
105
+ },
106
+ ]
107
+ prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
108
 
109
+ inputs = processor(images=image, text=prompt, return_tensors="pt").to("cuda:0")
110
 
111
+ # autoregressively complete prompt
112
+ output = model.generate(**inputs, max_new_tokens=100)
113
 
114
+ print(processor.decode(output[0], skip_special_tokens=True))
115
+ ```
116
 
117
+ ### Model optimization
118
 
119
+ #### 4-bit quantization through `bitsandbytes` library
120
 
121
+ First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
122
 
123
+ ```diff
124
+ model = LlavaNextForConditionalGeneration.from_pretrained(
125
+ model_id,
126
+ torch_dtype=torch.float16,
127
+ low_cpu_mem_usage=True,
128
+ + load_in_4bit=True
129
+ )
130
+ ```
131
+
132
+ #### Use Flash-Attention 2 to further speed-up generation
133
+
134
+ First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
135
+
136
+ ```diff
137
+ model = LlavaNextForConditionalGeneration.from_pretrained(
138
+ model_id,
139
+ torch_dtype=torch.float16,
140
+ low_cpu_mem_usage=True,
141
+ + use_flash_attention_2=True
142
+ ).to(0)
143
+ ```
144
 
145
+ ### BibTeX entry and citation info
146
 
147
+ ```bibtex
148
+ @misc{liu2023improved,
149
+ title={Improved Baselines with Visual Instruction Tuning},
150
+ author={Haotian Liu and Chunyuan Li and Yuheng Li and Yong Jae Lee},
151
+ year={2023},
152
+ eprint={2310.03744},
153
+ archivePrefix={arXiv},
154
+ primaryClass={cs.CV}
155
+ }
156
+ ```