danielhanchen
commited on
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,199 +1,144 @@
|
|
1 |
---
|
|
|
|
|
|
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
|
|
|
9 |
|
|
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
[
|
|
|
|
|
83 |
|
84 |
-
### Training Procedure
|
85 |
|
86 |
-
|
87 |
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
|
91 |
|
|
|
|
|
|
|
92 |
|
93 |
-
|
94 |
|
95 |
-
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
|
157 |
-
[More Information Needed]
|
158 |
|
159 |
-
|
160 |
|
161 |
-
[More Information Needed]
|
162 |
|
163 |
-
|
|
|
164 |
|
165 |
-
[
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
-
|
168 |
|
169 |
-
|
170 |
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
-
|
174 |
|
175 |
-
|
176 |
|
177 |
-
|
|
|
178 |
|
179 |
-
|
|
|
180 |
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
-
|
184 |
|
185 |
-
|
|
|
|
|
|
|
|
|
186 |
|
187 |
-
|
|
|
|
|
|
|
|
|
188 |
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
-
|
|
|
194 |
|
195 |
-
|
196 |
|
197 |
-
|
198 |
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
base_model: Qwen/Qwen2.5-Math-72B-Instruct
|
3 |
+
language:
|
4 |
+
- en
|
5 |
library_name: transformers
|
6 |
+
license: other
|
7 |
+
tags:
|
8 |
+
- unsloth
|
9 |
+
- transformers
|
10 |
---
|
11 |
|
12 |
+
# Finetune Llama 3.1, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!
|
13 |
|
14 |
+
We have a Qwen 2.5 (all model sizes) [free Google Colab Tesla T4 notebook](https://colab.research.google.com/drive/1Kose-ucXO1IBaZq5BvbwWieuubP7hxvQ?usp=sharing).
|
15 |
+
Also a [Qwen 2.5 conversational style notebook](https://colab.research.google.com/drive/1qN1CEalC70EO1wGKhNxs1go1W9So61R5?usp=sharing).
|
16 |
|
17 |
+
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth)
|
18 |
+
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
19 |
|
20 |
+
## ✨ Finetune for Free
|
21 |
|
22 |
+
All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
| Unsloth supports | Free Notebooks | Performance | Memory use |
|
25 |
+
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
|
26 |
+
| **Llama-3.1 8b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less |
|
27 |
+
| **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less |
|
28 |
+
| **Gemma-2 9b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2.4x faster | 58% less |
|
29 |
+
| **Mistral 7b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less |
|
30 |
+
| **TinyLlama** | [▶️ Start on Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing) | 3.9x faster | 74% less |
|
31 |
+
| **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less |
|
32 |
|
33 |
+
- This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates.
|
34 |
+
- This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
|
35 |
+
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
|
36 |
|
|
|
37 |
|
38 |
+
# Qwen2.5-Math-72B-Instruct
|
39 |
|
40 |
+
> [!Warning]
|
41 |
+
> <div align="center">
|
42 |
+
> <b>
|
43 |
+
> 🚨 Qwen2.5-Math mainly supports solving English and Chinese math problems through CoT and TIR. We do not recommend using this series of models for other tasks.
|
44 |
+
> </b>
|
45 |
+
> </div>
|
46 |
|
47 |
+
## Introduction
|
48 |
|
49 |
+
In August 2024, we released the first series of mathematical LLMs - [Qwen2-Math](https://qwenlm.github.io/blog/qwen2-math/) - of our Qwen family. A month later, we have upgraded it and open-sourced **Qwen2.5-Math** series, including base models **Qwen2.5-Math-1.5B/7B/72B**, instruction-tuned models **Qwen2.5-Math-1.5B/7B/72B-Instruct**, and mathematical reward model **Qwen2.5-Math-RM-72B**.
|
50 |
+
|
51 |
+
Unlike Qwen2-Math series which only supports using Chain-of-Thught (CoT) to solve English math problems, Qwen2.5-Math series is expanded to support using both CoT and Tool-integrated Reasoning (TIR) to solve math problems in both Chinese and English. The Qwen2.5-Math series models have achieved significant performance improvements compared to the Qwen2-Math series models on the Chinese and English mathematics benchmarks with CoT.
|
52 |
|
53 |
+
![](http://qianwen-res.oss-accelerate-overseas.aliyuncs.com/Qwen2.5/qwen2.5-math-pipeline.jpeg)
|
54 |
|
55 |
+
While CoT plays a vital role in enhancing the reasoning capabilities of LLMs, it faces challenges in achieving computational accuracy and handling complex mathematical or algorithmic reasoning tasks, such as finding the roots of a quadratic equation or computing the eigenvalues of a matrix. TIR can further improve the model's proficiency in precise computation, symbolic manipulation, and algorithmic manipulation. Qwen2.5-Math-1.5B/7B/72B-Instruct achieve 79.7, 85.3, and 87.8 respectively on the MATH benchmark using TIR.
|
56 |
|
57 |
+
## Model Details
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
|
|
59 |
|
60 |
+
For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen2.5-math/) and [GitHub repo](https://github.com/QwenLM/Qwen2.5-Math).
|
61 |
|
|
|
62 |
|
63 |
+
## Requirements
|
64 |
+
* `transformers>=4.37.0` for Qwen2.5-Math models. The latest version is recommended.
|
65 |
|
66 |
+
> [!Warning]
|
67 |
+
> <div align="center">
|
68 |
+
> <b>
|
69 |
+
> 🚨 This is a must because <code>transformers</code> integrated Qwen2 codes since <code>4.37.0</code>.
|
70 |
+
> </b>
|
71 |
+
> </div>
|
72 |
|
73 |
+
For requirements on GPU memory and the respective throughput, see similar results of Qwen2 [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
|
74 |
|
75 |
+
## Quick Start
|
76 |
|
77 |
+
> [!Important]
|
78 |
+
>
|
79 |
+
> **Qwen2.5-Math-72B-Instruct** is an instruction model for chatting;
|
80 |
+
>
|
81 |
+
> **Qwen2.5-Math-72B** is a base model typically used for completion and few-shot inference, serving as a better starting point for fine-tuning.
|
82 |
+
>
|
83 |
|
84 |
+
### 🤗 Hugging Face Transformers
|
85 |
|
86 |
+
Qwen2.5-Math can be deployed and infered in the same way as [Qwen2.5](https://github.com/QwenLM/Qwen2.5). Here we show a code snippet to show you how to use the chat model with `transformers`:
|
87 |
|
88 |
+
```python
|
89 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
90 |
|
91 |
+
model_name = "Qwen/Qwen2.5-Math-72B-Instruct"
|
92 |
+
device = "cuda" # the device to load the model onto
|
93 |
|
94 |
+
model = AutoModelForCausalLM.from_pretrained(
|
95 |
+
model_name,
|
96 |
+
torch_dtype="auto",
|
97 |
+
device_map="auto"
|
98 |
+
)
|
99 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
100 |
|
101 |
+
prompt = "Find the value of $x$ that satisfies the equation $4x+5 = 6x+7$."
|
102 |
|
103 |
+
# CoT
|
104 |
+
messages = [
|
105 |
+
{"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{}."},
|
106 |
+
{"role": "user", "content": prompt}
|
107 |
+
]
|
108 |
|
109 |
+
# TIR
|
110 |
+
messages = [
|
111 |
+
{"role": "system", "content": "Please integrate natural language reasoning with programs to solve the problem above, and put your final answer within \\boxed{}."},
|
112 |
+
{"role": "user", "content": prompt}
|
113 |
+
]
|
114 |
|
115 |
+
text = tokenizer.apply_chat_template(
|
116 |
+
messages,
|
117 |
+
tokenize=False,
|
118 |
+
add_generation_prompt=True
|
119 |
+
)
|
120 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
121 |
|
122 |
+
generated_ids = model.generate(
|
123 |
+
**model_inputs,
|
124 |
+
max_new_tokens=512
|
125 |
+
)
|
126 |
+
generated_ids = [
|
127 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
128 |
+
]
|
129 |
|
130 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
131 |
+
```
|
132 |
|
133 |
+
## Citation
|
134 |
|
135 |
+
If you find our work helpful, feel free to give us a citation.
|
136 |
|
137 |
+
```
|
138 |
+
@article{yang2024qwen25mathtechnicalreportmathematical,
|
139 |
+
title={Qwen2.5-Math Technical Report: Toward Mathematical Expert Model via Self-Improvement},
|
140 |
+
author={An Yang and Beichen Zhang and Binyuan Hui and Bofei Gao and Bowen Yu and Chengpeng Li and Dayiheng Liu and Jianhong Tu and Jingren Zhou and Junyang Lin and Keming Lu and Mingfeng Xue and Runji Lin and Tianyu Liu and Xingzhang Ren and Zhenru Zhang},
|
141 |
+
journal={arXiv preprint arXiv:2409.12122},
|
142 |
+
year={2024}
|
143 |
+
}
|
144 |
+
```
|