File size: 1,764 Bytes
5eb7d19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import torch.nn as nn
from transformers import LlamaForCausalLM
from transformers.models.llama.modeling_llama import LlamaMLP

from .configuration_llama_lm_feats import LlamaWithFeatsEncoderConfig


class LlamaFeatsMLP(LlamaMLP):
    def __init__(self, config):
        super().__init__(config)
        self.gate_proj = nn.Linear(config.feats_hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(config.feats_hidden_size, self.intermediate_size, bias=False)


class LlamaWithFeatsForCausalLM(LlamaForCausalLM):
    config_class = LlamaWithFeatsEncoderConfig

    def __init__(self, config: LlamaWithFeatsEncoderConfig):
        super().__init__(config)
        self.feature_mlp = LlamaFeatsMLP(config)
        self.post_init()

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        meta_features=None,
        position_ids=None,
        past_key_values=None,
        inputs_embeds=None,
        labels=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):

        if inputs_embeds is None:
            inputs_embeds = self.model.embed_tokens(input_ids)

        if meta_features is not None:
            feats_embeds = self.feature_mlp(meta_features)
            inputs_embeds = inputs_embeds + feats_embeds

        return super().forward(
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            labels=labels,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )