File size: 8,459 Bytes
7130ecc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
using System.Collections.Generic;
using Unity.Sentis;
using UnityEngine;
using UnityEngine.UI;
using UnityEngine.Video;
using Lays = Unity.Sentis.Layers;
/*
* YOLOv8n Inference Script
* ========================
*
* Place this script on the Main Camera.
*
* Place the yolov8n.sentis file and a *.mp4 video file in the Assets/StreamingAssets folder
* Create a RawImage in your scene and set it as the displayImage field
* Drag the classes.txt into the labelsAsset field
* Add a reference to a sprite image for the bounding box and a font for the text
*
*/
public class RunYOLO8n : MonoBehaviour
{
const string modelName = "yolov8n.sentis";
// Change this to the name of the video you put in StreamingAssets folder:
const string videoName = "giraffes.mp4";
// Link the classes.txt here:
public TextAsset labelsAsset;
// Create a Raw Image in the scene and link it here:
public RawImage displayImage;
// Link to a bounding box texture here:
public Sprite boxTexture;
// Link to the font for the labels:
public Font font;
const BackendType backend = BackendType.GPUCompute;
private Transform displayLocation;
private Model model;
private IWorker engine;
private string[] labels;
private RenderTexture targetRT;
//Image size for the model
private const int imageWidth = 640;
private const int imageHeight = 640;
//The number of classes in the model
private const int numClasses = 80;
private VideoPlayer video;
List<GameObject> boxPool = new List<GameObject>();
[SerializeField, Range(0, 1)] float iouThreshold = 0.5f;
[SerializeField, Range(0, 1)] float scoreThreshold = 0.5f;
int maxOutputBoxes = 64;
//For using tensor operators:
Ops ops;
//bounding box data
public struct BoundingBox
{
public float centerX;
public float centerY;
public float width;
public float height;
public string label;
}
void Start()
{
Application.targetFrameRate = 60;
Screen.orientation = ScreenOrientation.LandscapeLeft;
ops = WorkerFactory.CreateOps(backend, null);
//Parse neural net labels
labels = labelsAsset.text.Split('\n');
LoadModel();
targetRT = new RenderTexture(imageWidth, imageHeight, 0);
//Create image to display video
displayLocation = displayImage.transform;
//Create engine to run model
engine = WorkerFactory.CreateWorker(backend, model);
SetupInput();
}
void LoadModel()
{
//Load model
model = ModelLoader.Load(Application.streamingAssetsPath + "/" + modelName);
//The classes are also stored here in JSON format:
Debug.Log($"Class names: \n{model.Metadata["names"]}");
//We need to add some layers to choose the best boxes with the NMSLayer
//Set constants
model.AddConstant(new Lays.Constant("0", new int[] { 0 }));
model.AddConstant(new Lays.Constant("1", new int[] { 1 }));
model.AddConstant(new Lays.Constant("4", new int[] { 4 }));
model.AddConstant(new Lays.Constant("classes_plus_4", new int[] { numClasses + 4 }));
model.AddConstant(new Lays.Constant("maxOutputBoxes", new int[] { maxOutputBoxes }));
model.AddConstant(new Lays.Constant("iouThreshold", new float[] { iouThreshold }));
model.AddConstant(new Lays.Constant("scoreThreshold", new float[] { scoreThreshold }));
//Add layers
model.AddLayer(new Lays.Slice("boxCoords0", "output0", "0", "4", "1"));
model.AddLayer(new Lays.Transpose("boxCoords", "boxCoords0", new int[] { 0, 2, 1 }));
model.AddLayer(new Lays.Slice("scores0", "output0", "4", "classes_plus_4", "1"));
model.AddLayer(new Lays.NonMaxSuppression("NMS", "boxCoords", "scores0",
"maxOutputBoxes", "iouThreshold", "scoreThreshold",
centerPointBox: Lays.CenterPointBox.Corners
));
model.outputs.Clear();
model.AddOutput("boxCoords");
model.AddOutput("NMS");
}
void SetupInput()
{
video = gameObject.AddComponent<VideoPlayer>();
video.renderMode = VideoRenderMode.APIOnly;
video.source = VideoSource.Url;
video.url = Application.streamingAssetsPath + "/" + videoName;
video.isLooping = true;
video.Play();
}
private void Update()
{
ExecuteML();
if (Input.GetKeyDown(KeyCode.Escape))
{
Application.Quit();
}
}
public void ExecuteML()
{
ClearAnnotations();
if (video && video.texture)
{
float aspect = video.width * 1f / video.height;
Graphics.Blit(video.texture, targetRT, new Vector2(1f / aspect, 1), new Vector2(0, 0));
displayImage.texture = targetRT;
}
else return;
using var input = TextureConverter.ToTensor(targetRT, imageWidth, imageHeight, 3);
engine.Execute(input);
var boxCoords = engine.PeekOutput("boxCoords") as TensorFloat;
var NMS = engine.PeekOutput("NMS") as TensorInt;
using var boxIDs = ops.Slice(NMS, new int[] { 2 }, new int[] { 3 }, new int[] { 1 }, new int[] { 1 });
using var boxIDsFlat = boxIDs.ShallowReshape(new TensorShape(boxIDs.shape.length)) as TensorInt;
using var output = ops.Gather(boxCoords, boxIDsFlat, 1);
output.MakeReadable();
NMS.MakeReadable();
float displayWidth = displayImage.rectTransform.rect.width;
float displayHeight = displayImage.rectTransform.rect.height;
float scaleX = displayWidth / imageWidth;
float scaleY = displayHeight / imageHeight;
//Draw the bounding boxes
for (int n = 0; n < output.shape[1]; n++)
{
var box = new BoundingBox
{
centerX = output[0, n, 0] * scaleX - displayWidth / 2,
centerY = output[0, n, 1] * scaleY - displayHeight / 2,
width = output[0, n, 2] * scaleX,
height = output[0, n, 3] * scaleY,
label = labels[(int)NMS[n, 1]]
};
DrawBox(box, n);
}
}
public void DrawBox(BoundingBox box , int id)
{
//Create the bounding box graphic or get from pool
GameObject panel;
if (id < boxPool.Count)
{
panel = boxPool[id];
panel.SetActive(true);
}
else
{
panel = CreateNewBox(Color.yellow);
}
//Set box position
panel.transform.localPosition = new Vector3(box.centerX, -box.centerY);
//Set box size
RectTransform rt = panel.GetComponent<RectTransform>();
rt.sizeDelta = new Vector2(box.width, box.height);
//Set label text
var label = panel.GetComponentInChildren<Text>();
label.text = box.label;
}
public GameObject CreateNewBox(Color color)
{
//Create the box and set image
var panel = new GameObject("ObjectBox");
panel.AddComponent<CanvasRenderer>();
Image img = panel.AddComponent<Image>();
img.color = color;
img.sprite = boxTexture;
img.type = Image.Type.Sliced;
panel.transform.SetParent(displayLocation, false);
//Create the label
var text = new GameObject("ObjectLabel");
text.AddComponent<CanvasRenderer>();
text.transform.SetParent(panel.transform, false);
Text txt = text.AddComponent<Text>();
txt.font = font;
txt.color = color;
txt.fontSize = 40;
txt.horizontalOverflow = HorizontalWrapMode.Overflow;
RectTransform rt2 = text.GetComponent<RectTransform>();
rt2.offsetMin = new Vector2(20, rt2.offsetMin.y);
rt2.offsetMax = new Vector2(0, rt2.offsetMax.y);
rt2.offsetMin = new Vector2(rt2.offsetMin.x, 0);
rt2.offsetMax = new Vector2(rt2.offsetMax.x, 30);
rt2.anchorMin = new Vector2(0, 0);
rt2.anchorMax = new Vector2(1, 1);
boxPool.Add(panel);
return panel;
}
public void ClearAnnotations()
{
foreach(var box in boxPool)
{
box.SetActive(false);
}
}
private void OnDestroy()
{
engine?.Dispose();
ops?.Dispose();
}
}
|