yolov8s / README.md
fcakyon's picture
Create README.md
0ef5f69
|
raw
history blame
2.17 kB
metadata
tags:
  - ultralyticsplus
  - ultralytics
  - yolov8
  - yolo
  - vision
  - object-detection
  - pytorch
library_name: ultralytics
library_version: 8.0.4
inference: false
model-index:
  - name: ultralyticsplus/yolov8s
    results:
      - task:
          type: object-detection
        metrics:
          - type: precision
            value: 0.449
            name: mAP

Supported Labels

['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']

How to use

  • Install ultralytics and ultralyticsplus:
pip install -U ultralytics ultralyticsplus
  • Load model and perform prediction:
from ultralyticsplus import YOLO, render_predictions

# load model
model = YOLO('ultralyticsplus/yolov8s')

# set model parameters
model.overrides['conf'] = 0.25  # NMS confidence threshold
model.overrides['iou'] = 0.45  # NMS IoU threshold
model.overrides['agnostic_nms'] = False  # NMS class-agnostic
model.overrides['max_det'] = 1000  # maximum number of detections per image

# set image
img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'

# perform inference
for result in model.predict(img, imgsz=640, return_outputs=True):
    print(result) # [x1, y1, x2, y2, conf, class]
    render = render_predictions(model, img=img, det=result["det"])
    render.show()