--- tags: - ultralyticsplus - ultralytics - yolov8 - yolo - vision - object-detection - pytorch library_name: ultralytics library_version: 8.0.4 inference: false model-index: - name: ultralyticsplus/yolov8s results: - task: type: object-detection metrics: - type: precision # since mAP is not available on hf.co/metrics value: 0.449 # min: 0.0 - max: 1.0 name: mAP --- ### Supported Labels ``` ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'] ``` ### How to use - Install `ultralytics` and `ultralyticsplus`: ```bash pip install -U ultralytics ultralyticsplus ``` - Load model and perform prediction: ```python from ultralyticsplus import YOLO, render_predictions # load model model = YOLO('ultralyticsplus/yolov8s') # set model parameters model.overrides['conf'] = 0.25 # NMS confidence threshold model.overrides['iou'] = 0.45 # NMS IoU threshold model.overrides['agnostic_nms'] = False # NMS class-agnostic model.overrides['max_det'] = 1000 # maximum number of detections per image # set image img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg' # perform inference for result in model.predict(img, imgsz=640, return_outputs=True): print(result) # [x1, y1, x2, y2, conf, class] render = render_predictions(model, img=img, det=result["det"]) render.show() ```