metadata
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_keras_callback
model-index:
- name: ukzash1/bert_fineTuned
results:
- task:
type: sequence-classification
dataset:
name: glue
type: cola
metrics:
- name: Validation Accuracy
type: Accuracy
value: 0.8207
source:
name: Hugging Face Model Hub
url: https://huggingface.co/ukzash1/bert_fineTuned
widget:
- text: I liked this movie
output:
- label: Acceptable
score: 0.8
- label: Not Acceptable
score: 0.2
- text: This not is bad
output:
- label: Acceptable
score: 0.2
- label: Not Acceptable
score: 0.8
library_name: transformers
language:
- en
metrics:
- accuracy
pipeline_tag: text-classification
ukzash1/bert_fineTuned
This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.3426
- Train Accuracy: 0.8555
- Validation Loss: 0.4083
- Validation Accuracy: 0.8198
- Epoch: 1
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
---|---|---|---|---|
0.5409 | 0.7317 | 0.5398 | 0.7756 | 0 |
0.3426 | 0.8555 | 0.4083 | 0.8198 | 1 |
Framework versions
- Transformers 4.38.2
- TensorFlow 2.13.0
- Datasets 2.20.0
- Tokenizers 0.15.2