File size: 2,155 Bytes
2d2c17b 4905c25 2d2c17b 4905c25 2d2c17b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-amazon-en-es
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-finetuned-amazon-en-es
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7922
- Rouge1: 18.97
- Rouge2: 7.0348
- Rougel: 17.6971
- Rougelsum: 17.882
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
| 11.9457 | 1.0 | 151 | 4.4346 | 5.986 | 1.1429 | 5.9458 | 5.7994 |
| 5.4958 | 2.0 | 302 | 3.4869 | 7.1658 | 1.8822 | 7.2823 | 7.1334 |
| 4.4559 | 3.0 | 453 | 3.1252 | 8.5582 | 1.605 | 8.3697 | 8.302 |
| 4.0657 | 4.0 | 604 | 2.9205 | 10.6565 | 3.4667 | 10.4793 | 10.3928 |
| 3.828 | 5.0 | 755 | 2.8419 | 18.3545 | 6.8241 | 17.013 | 17.3331 |
| 3.6794 | 6.0 | 906 | 2.8178 | 18.6777 | 7.0318 | 17.2025 | 17.3807 |
| 3.6205 | 7.0 | 1057 | 2.7984 | 18.8984 | 7.0004 | 17.4826 | 17.7813 |
| 3.5711 | 8.0 | 1208 | 2.7922 | 18.97 | 7.0348 | 17.6971 | 17.882 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
|