|
--- |
|
language: zh |
|
datasets: CLUECorpusSmall |
|
widget: |
|
- text: "作为电子extra0的平台,京东绝对是领先者。如今的刘强extra1已经是身价过extra2的老板。" |
|
|
|
|
|
--- |
|
|
|
|
|
# Chinese T5 |
|
|
|
## Model description |
|
|
|
This is the set of Chinese T5 models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). |
|
|
|
The Text-to-Text Transfer Transformer (T5) leverages a unified text-to-text format and attains state-of-the-art results on a wide variety of English-language NLP tasks. Following their work, we released a series of Chinese T5 models. |
|
|
|
You can download the set of Chinese T5 models either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: |
|
|
|
| | Link | |
|
| -------- | :-----------------------: | |
|
| **T5-Small** | [**L=6/H=512 (Small)**][small] | |
|
| **T5-Base** | [**L=12/H=768 (Base)**][base] | |
|
|
|
In T5, spans of the input sequence are masked by so-called sentinel token. Each sentinel token represents a unique mask token for the input sequence and should start with `<extra_id_0>`, `<extra_id_1>`, … up to `<extra_id_99>`. However, `<extra_id_xxx>` is separated into multiple parts in Huggingface's Hosted inference API. Therefore, we replace `<extra_id_xxx>` with `extraxxx` in vocabulary and BertTokenizer regards `extraxxx` as one sentinel token. |
|
|
|
## How to use |
|
|
|
You can use this model directly with a pipeline for text2text generation (take the case of T5-Small): |
|
|
|
```python |
|
>>> from transformers import BertTokenizer, T5ForConditionalGeneration, Text2TextGenerationPipeline |
|
>>> tokenizer = BertTokenizer.from_pretrained("uer/t5-small-chinese-cluecorpussmall") |
|
>>> model = T5ForConditionalGeneration.from_pretrained("uer/t5-small-chinese-cluecorpussmall") |
|
>>> text2text_generator = Text2TextGenerationPipeline(model, tokenizer) |
|
>>> text2text_generator("中国的首都是extra0京", max_length=50, do_sample=False) |
|
[{'generated_text': 'extra0 北 extra1 extra2 extra3 extra4 extra5'}] |
|
``` |
|
|
|
## Training data |
|
|
|
[CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. |
|
|
|
## Training procedure |
|
|
|
The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. |
|
|
|
Taking the case of T5-Small |
|
|
|
Stage1: |
|
|
|
``` |
|
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ |
|
--vocab_path models/google_zh_with_sentinel_vocab.txt \ |
|
--dataset_path cluecorpussmall_t5_seq128_dataset.pt \ |
|
--processes_num 32 --seq_length 128 \ |
|
--dynamic_masking --data_processor t5 |
|
``` |
|
|
|
``` |
|
python3 pretrain.py --dataset_path cluecorpussmall_t5_seq128_dataset.pt \ |
|
--vocab_path models/google_zh_with_sentinel_vocab.txt \ |
|
--config_path models/t5/small_config.json \ |
|
--output_model_path models/cluecorpussmall_t5_small_seq128_model.bin \ |
|
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ |
|
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ |
|
--learning_rate 1e-3 --batch_size 64 \ |
|
--span_masking --span_geo_prob 0.3 --span_max_length 5 |
|
|
|
``` |
|
|
|
Stage2: |
|
|
|
``` |
|
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ |
|
--vocab_path models/google_zh_with_sentinel_vocab.txt \ |
|
--dataset_path cluecorpussmall_t5_small_seq512_dataset.pt \ |
|
--processes_num 32 --seq_length 512 \ |
|
--dynamic_masking --data_processor t5 |
|
``` |
|
|
|
``` |
|
python3 pretrain.py --dataset_path cluecorpussmall_t5_seq512_dataset.pt \ |
|
--vocab_path models/google_zh_with_sentinel_vocab.txt \ |
|
--pretrained_model_path models/cluecorpussmall_t5_small_seq128_model.bin-1000000 \ |
|
--config_path models/t5/small_config.json \ |
|
--output_model_path models/cluecorpussmall_t5_small_seq512_model.bin \ |
|
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ |
|
--total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ |
|
--learning_rate 5e-4 --batch_size 16 \ |
|
--span_masking --span_geo_prob 0.3 --span_max_length 5 |
|
``` |
|
|
|
Finally, we convert the pre-trained model into Huggingface's format: |
|
|
|
``` |
|
python3 scripts/convert_t5_from_uer_to_huggingface.py --input_model_path cluecorpussmall_t5_small_seq512_model.bin-250000 \ |
|
--output_model_path pytorch_model.bin \ |
|
--layers_num 6 \ |
|
--type t5 |
|
``` |
|
|
|
|
|
### BibTeX entry and citation info |
|
|
|
``` |
|
@article{2020t5, |
|
title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer}, |
|
author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu}, |
|
journal = {Journal of Machine Learning Research}, |
|
pages = {1-67}, |
|
year = {2020} |
|
} |
|
|
|
@article{zhao2019uer, |
|
title={UER: An Open-Source Toolkit for Pre-training Models}, |
|
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, |
|
journal={EMNLP-IJCNLP 2019}, |
|
pages={241}, |
|
year={2019} |
|
} |
|
``` |
|
|
|
[small]:https://huggingface.co/uer/t5-small-chinese-cluecorpussmall |
|
[base]:https://huggingface.co/uer/t5-base-chinese-cluecorpussmall |