uer's picture
Update README.md
f55e2b0
|
raw
history blame
5.66 kB
---
language: Chinese
datasets: CLUECorpusSmall
widget:
- text: "中国的首都是[MASK]"
---
# Chinese RoBERTa-base-word Model
## Model description
We use sentencepiece model to train this roberta base model. You can download the model via HuggingFace from the link [roberta-base-word-chinese-cluecorpussmall](https://huggingface.co/uer/roberta-base-word-chinese-cluecorpussmall).
## How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='uer/roberta-base-word-chinese-cluecorpussmall')
>>> unmasker("中国的首都是[MASK]。")
```
BertTokenizer does not support sentencepiece, so we use AlbertTokenizer here.
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AlbertTokenizer, BertModel
tokenizer = AlbertTokenizer.from_pretrained('uer/roberta-base-word-chinese-cluecorpussmall')
model = BertModel.from_pretrained("uer/roberta-base-word-chinese-cluecorpussmall")
text = "用你喜欢的任何文本替换我。"
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import AlbertTokenizer, TFBertModel
tokenizer = AlbertTokenizer.from_pretrained('uer/roberta-base-word-chinese-cluecorpussmall')
model = TFBertModel.from_pretrained("uer/roberta-base-word-chinese-cluecorpussmall")
text = "用你喜欢的任何文本替换我。"
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Training data
[CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data.
## Training procedure
We use google's **[sentencepiece](https://github.com/google/sentencepiece)** to train the sentencepiece model.
```
>>> import sentencepiece as spm
>>> spm.SentencePieceTrainer.train(input='CLUEsmall_shuf.txt',
model_prefix='clue_6',
vocab_size=100000,
max_sentence_length=1024,
max_sentencepiece_length=6,
user_defined_symbols=['[MASK]','[unused1]','[unused2]',
'[unused3]','[unused4]','[unused5]','[unused6]',
'[unused7]','[unused8]','[unused9]','[unused10]'],
pad_id=0,
pad_piece='[PAD]',
unk_id=1,
unk_piece='[UNK]',
bos_id=2,
bos_piece='[CLS]',
eos_id=3,
eos_piece='[SEP]',
train_extremely_large_corpus=True
)
```
The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud TI-ONE](https://cloud.tencent.com/product/tione/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512.
Stage1:
```
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
--spm_model_path models/clue_6.model \
--dataset_path cluecorpussmall_seq128_dataset.pt \
--processes_num 32 --seq_length 128 \
--dynamic_masking --target mlm
```
```
python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \
--spm_model_path models/clue_6.model \
--config_path models/bert/base_config.json \
--output_model_path models/cluecorpussmall_word_roberta_base_128.bin \
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
--learning_rate 1e-4 --batch_size 64 \
--embedding word_pos_seg --encoder transformer --mask fully_visible \
--target mlm --tie_weights
```
Stage2:
```
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
--spm_model_path models/clue_6.model \
--dataset_path cluecorpussmall_seq512_dataset.pt \
--processes_num 32 --seq_length 512 \
--dynamic_masking --target mlm
```
```
python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \
--pretrained_model_path models/cluecorpussmall_word_roberta_base_128.bin-1000000 \
--spm_model_path models/clue_6.model \
--config_path models/bert/base_config.json \
--output_model_path models/cluecorpussmall_word_roberta_base_512.bin \
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
--total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \
--learning_rate 5e-5 --batch_size 16 \
--embedding word_pos_seg --encoder transformer --mask fully_visible \
--target mlm --tie_weights
```
Finally, we convert the pre-trained model into Huggingface's format:
```
python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_word_roberta_base_512.bin-250000 \
--output_model_path pytorch_model.bin \
--layers_num 12 --target mlm
```
### BibTeX entry and citation info
```
@article{zhao2019uer,
title={UER: An Open-Source Toolkit for Pre-training Models},
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
journal={EMNLP-IJCNLP 2019},
pages={241},
year={2019}
}
```