|
--- |
|
language: Chinese |
|
datasets: CLUECorpusSmall |
|
widget: |
|
- text: "中国的首都是[MASK]" |
|
|
|
|
|
|
|
--- |
|
|
|
|
|
# Chinese RoBERTa-base-word Model |
|
|
|
## Model description |
|
|
|
We use sentencepiece model to train this roberta base model. You can download the model via HuggingFace from the link [roberta-base-word-chinese-cluecorpussmall](https://huggingface.co/uer/roberta-base-word-chinese-cluecorpussmall). |
|
|
|
## How to use |
|
|
|
You can use this model directly with a pipeline for masked language modeling: |
|
|
|
```python |
|
>>> from transformers import pipeline |
|
>>> unmasker = pipeline('fill-mask', model='uer/roberta-base-word-chinese-cluecorpussmall') |
|
>>> unmasker("中国的首都是[MASK]。") |
|
``` |
|
|
|
BertTokenizer does not support sentencepiece, so we use AlbertTokenizer here. |
|
|
|
Here is how to use this model to get the features of a given text in PyTorch: |
|
|
|
```python |
|
from transformers import AlbertTokenizer, BertModel |
|
tokenizer = AlbertTokenizer.from_pretrained('uer/roberta-base-word-chinese-cluecorpussmall') |
|
model = BertModel.from_pretrained("uer/roberta-base-word-chinese-cluecorpussmall") |
|
text = "用你喜欢的任何文本替换我。" |
|
encoded_input = tokenizer(text, return_tensors='pt') |
|
output = model(**encoded_input) |
|
``` |
|
|
|
and in TensorFlow: |
|
|
|
```python |
|
from transformers import AlbertTokenizer, TFBertModel |
|
tokenizer = AlbertTokenizer.from_pretrained('uer/roberta-base-word-chinese-cluecorpussmall') |
|
model = TFBertModel.from_pretrained("uer/roberta-base-word-chinese-cluecorpussmall") |
|
text = "用你喜欢的任何文本替换我。" |
|
encoded_input = tokenizer(text, return_tensors='tf') |
|
output = model(encoded_input) |
|
``` |
|
|
|
## Training data |
|
|
|
[CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. |
|
|
|
## Training procedure |
|
|
|
We use google's **[sentencepiece](https://github.com/google/sentencepiece)** to train the sentencepiece model. |
|
|
|
``` |
|
>>> import sentencepiece as spm |
|
>>> spm.SentencePieceTrainer.train(input='CLUEsmall_shuf.txt', |
|
model_prefix='clue_6', |
|
vocab_size=100000, |
|
max_sentence_length=1024, |
|
max_sentencepiece_length=6, |
|
user_defined_symbols=['[MASK]','[unused1]','[unused2]', |
|
'[unused3]','[unused4]','[unused5]','[unused6]', |
|
'[unused7]','[unused8]','[unused9]','[unused10]'], |
|
pad_id=0, |
|
pad_piece='[PAD]', |
|
unk_id=1, |
|
unk_piece='[UNK]', |
|
bos_id=2, |
|
bos_piece='[CLS]', |
|
eos_id=3, |
|
eos_piece='[SEP]', |
|
train_extremely_large_corpus=True |
|
) |
|
``` |
|
|
|
The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud TI-ONE](https://cloud.tencent.com/product/tione/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. |
|
|
|
Stage1: |
|
|
|
``` |
|
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ |
|
--spm_model_path models/clue_6.model \ |
|
--dataset_path cluecorpussmall_seq128_dataset.pt \ |
|
--processes_num 32 --seq_length 128 \ |
|
--dynamic_masking --target mlm |
|
``` |
|
|
|
``` |
|
python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \ |
|
--spm_model_path models/clue_6.model \ |
|
--config_path models/bert/base_config.json \ |
|
--output_model_path models/cluecorpussmall_word_roberta_base_128.bin \ |
|
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ |
|
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ |
|
--learning_rate 1e-4 --batch_size 64 \ |
|
--embedding word_pos_seg --encoder transformer --mask fully_visible \ |
|
--target mlm --tie_weights |
|
``` |
|
|
|
Stage2: |
|
|
|
``` |
|
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ |
|
--spm_model_path models/clue_6.model \ |
|
--dataset_path cluecorpussmall_seq512_dataset.pt \ |
|
--processes_num 32 --seq_length 512 \ |
|
--dynamic_masking --target mlm |
|
``` |
|
|
|
``` |
|
python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \ |
|
--pretrained_model_path models/cluecorpussmall_word_roberta_base_128.bin-1000000 \ |
|
--spm_model_path models/clue_6.model \ |
|
--config_path models/bert/base_config.json \ |
|
--output_model_path models/cluecorpussmall_word_roberta_base_512.bin \ |
|
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ |
|
--total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ |
|
--learning_rate 5e-5 --batch_size 16 \ |
|
--embedding word_pos_seg --encoder transformer --mask fully_visible \ |
|
--target mlm --tie_weights |
|
``` |
|
|
|
Finally, we convert the pre-trained model into Huggingface's format: |
|
|
|
``` |
|
python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_word_roberta_base_512.bin-250000 \ |
|
--output_model_path pytorch_model.bin \ |
|
--layers_num 12 --target mlm |
|
``` |
|
|
|
### BibTeX entry and citation info |
|
|
|
``` |
|
@article{zhao2019uer, |
|
title={UER: An Open-Source Toolkit for Pre-training Models}, |
|
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, |
|
journal={EMNLP-IJCNLP 2019}, |
|
pages={241}, |
|
year={2019} |
|
} |
|
``` |