|
--- |
|
language: zh |
|
widget: |
|
- text: "江苏警方通报特斯拉冲进店铺" |
|
|
|
--- |
|
|
|
# Chinese RoBERTa-Base Model for NER |
|
|
|
## Model description |
|
|
|
The model is used for named entity recognition. You can download the model either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo) (in UER-py format), or via HuggingFace from the link [roberta-base-finetuned-cluener2020-chinese](https://huggingface.co/uer/roberta-base-finetuned-cluener2020-chinese). |
|
|
|
## How to use |
|
|
|
You can use this model directly with a pipeline for token classification : |
|
|
|
```python |
|
>>> from transformers import AutoModelForTokenClassification,AutoTokenizer,pipeline |
|
>>> model = AutoModelForTokenClassification.from_pretrained('uer/roberta-base-finetuned-cluener2020-chinese') |
|
>>> tokenizer = AutoTokenizer.from_pretrained('uer/roberta-base-finetuned-cluener2020-chinese') |
|
>>> ner = pipeline('ner', model=model, tokenizer=tokenizer) |
|
>>> ner("江苏警方通报特斯拉冲进店铺") |
|
[ |
|
{'word': '江', 'score': 0.49153077602386475, 'entity': 'B-address', 'index': 1, 'start': 0, 'end': 1}, |
|
{'word': '苏', 'score': 0.6319217681884766, 'entity': 'I-address', 'index': 2, 'start': 1, 'end': 2}, |
|
{'word': '特', 'score': 0.5912262797355652, 'entity': 'B-company', 'index': 7, 'start': 6, 'end': 7}, |
|
{'word': '斯', 'score': 0.69145667552948, 'entity': 'I-company', 'index': 8, 'start': 7, 'end': 8}, |
|
{'word': '拉', 'score': 0.7054660320281982, 'entity': 'I-company', 'index': 9, 'start': 8, 'end': 9} |
|
] |
|
``` |
|
|
|
## Training data |
|
|
|
[CLUENER2020](https://github.com/CLUEbenchmark/CLUENER2020) is used as training data. We only use the train set of the dataset. |
|
|
|
## Training procedure |
|
|
|
The model is fine-tuned by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We fine-tune five epochs with a sequence length of 512 on the basis of the pre-trained model [chinese_roberta_L-12_H-768](https://huggingface.co/uer/chinese_roberta_L-12_H-768). At the end of each epoch, the model is saved when the best performance on development set is achieved. |
|
|
|
``` |
|
python3 run_ner.py --pretrained_model_path models/cluecorpussmall_roberta_base_seq512_model.bin-250000 \ |
|
--vocab_path models/google_zh_vocab.txt \ |
|
--train_path datasets/cluener2020/train.tsv \ |
|
--dev_path datasets/cluener2020/dev.tsv \ |
|
--label2id_path datasets/cluener2020/label2id.json \ |
|
--output_model_path models/cluener2020_ner_model.bin \ |
|
--learning_rate 3e-5 --epochs_num 5 --batch_size 32 --seq_length 512 |
|
``` |
|
|
|
Finally, we convert the pre-trained model into Huggingface's format: |
|
|
|
``` |
|
python3 scripts/convert_bert_token_classification_from_uer_to_huggingface.py --input_model_path models/cluener2020_ner_model.bin \ |
|
--output_model_path pytorch_model.bin \ |
|
--layers_num 12 |
|
``` |
|
|
|
### BibTeX entry and citation info |
|
|
|
``` |
|
@article{devlin2018bert, |
|
title={BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding}, |
|
author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, |
|
journal={arXiv preprint arXiv:1810.04805}, |
|
year={2018} |
|
} |
|
|
|
@article{liu2019roberta, |
|
title={Roberta: A robustly optimized bert pretraining approach}, |
|
author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, |
|
journal={arXiv preprint arXiv:1907.11692}, |
|
year={2019} |
|
} |
|
|
|
@article{xu2020cluener2020, |
|
title={CLUENER2020: Fine-grained Name Entity Recognition for Chinese}, |
|
author={Xu, Liang and Dong, Qianqian and Yu, Cong and Tian, Yin and Liu, Weitang and Li, Lu and Zhang, Xuanwei}, |
|
journal={arXiv preprint arXiv:2001.04351}, |
|
year={2020} |
|
} |
|
|
|
@article{zhao2019uer, |
|
title={UER: An Open-Source Toolkit for Pre-training Models}, |
|
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, |
|
journal={EMNLP-IJCNLP 2019}, |
|
pages={241}, |
|
year={2019} |
|
} |
|
``` |