Update README.md
Browse files
README.md
CHANGED
@@ -21,8 +21,7 @@ You can use the model directly with a pipeline for text generation:
|
|
21 |
When the parameter skip_special_tokens is True:
|
22 |
|
23 |
```python
|
24 |
-
>>> from transformers import BertTokenizer, GPT2LMHeadModel,
|
25 |
-
>>> from transformers import TextGenerationPipeline,
|
26 |
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-poem")
|
27 |
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-poem")
|
28 |
>>> text_generator = TextGenerationPipeline(model, tokenizer)
|
@@ -33,8 +32,7 @@ When the parameter skip_special_tokens is True:
|
|
33 |
When the parameter skip_special_tokens is False:
|
34 |
|
35 |
```python
|
36 |
-
>>> from transformers import BertTokenizer, GPT2LMHeadModel,
|
37 |
-
>>> from transformers import TextGenerationPipeline,
|
38 |
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-poem")
|
39 |
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-poem")
|
40 |
>>> text_generator = TextGenerationPipeline(model, tokenizer)
|
|
|
21 |
When the parameter skip_special_tokens is True:
|
22 |
|
23 |
```python
|
24 |
+
>>> from transformers import BertTokenizer, GPT2LMHeadModel,TextGenerationPipeline
|
|
|
25 |
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-poem")
|
26 |
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-poem")
|
27 |
>>> text_generator = TextGenerationPipeline(model, tokenizer)
|
|
|
32 |
When the parameter skip_special_tokens is False:
|
33 |
|
34 |
```python
|
35 |
+
>>> from transformers import BertTokenizer, GPT2LMHeadModel,TextGenerationPipeline
|
|
|
36 |
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-poem")
|
37 |
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-poem")
|
38 |
>>> text_generator = TextGenerationPipeline(model, tokenizer)
|