Update README.md
Browse files
README.md
CHANGED
@@ -9,17 +9,15 @@ widget:
|
|
9 |
|
10 |
## Model description
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
15 |
|
16 |
## How to use
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
When the parameter ***skip_special_tokens*** is True:
|
23 |
|
24 |
```python
|
25 |
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
|
@@ -31,7 +29,7 @@ When the parameter ***skip_special_tokens*** is True:
|
|
31 |
[{'generated_text': '[CLS]丹 枫 江 冷 人 初 去 - 黄 叶 声 从 天 外 来 阅 旗'}]
|
32 |
```
|
33 |
|
34 |
-
When the parameter
|
35 |
|
36 |
```python
|
37 |
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
|
@@ -45,7 +43,7 @@ When the parameter ***skip_special_tokens*** is Flase:
|
|
45 |
|
46 |
## Training data
|
47 |
|
48 |
-
Contains
|
49 |
|
50 |
## Training procedure
|
51 |
|
|
|
9 |
|
10 |
## Model description
|
11 |
|
12 |
+
The model is used to generate Chinese couplets. You can download the model either from the [GPT2-Chinese Github page](https://github.com/Morizeyao/GPT2-Chinese), or via HuggingFace from the link [gpt2-chinese-couplet][couplet].
|
13 |
|
14 |
+
Since the parameter skip_special_tokens is used in the pipelines.py, special tokens such as [SEP], [UNK] will be deleted, and the output results may not be neat.
|
15 |
|
16 |
## How to use
|
17 |
|
18 |
+
You can use the model directly with a pipeline for text generation:
|
19 |
|
20 |
+
When the parameter skip_special_tokens is True:
|
|
|
|
|
21 |
|
22 |
```python
|
23 |
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
|
|
|
29 |
[{'generated_text': '[CLS]丹 枫 江 冷 人 初 去 - 黄 叶 声 从 天 外 来 阅 旗'}]
|
30 |
```
|
31 |
|
32 |
+
When the parameter skip_special_tokens is False:
|
33 |
|
34 |
```python
|
35 |
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
|
|
|
43 |
|
44 |
## Training data
|
45 |
|
46 |
+
Contains 700,000 Chinese couplets collected by [couplet-clean-dataset](https://github.com/v-zich/couplet-clean-dataset).
|
47 |
|
48 |
## Training procedure
|
49 |
|