File size: 679 Bytes
6e42c7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
# import
import librosa, torch
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
# load the tokenizer and model
tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-large-960h")
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h")
# load the audio data (use your own wav file here!)
input_audio, sr = librosa.load('my_wav_file.wav', sr=16000)
# tokenize
input_values = tokenizer(input_audio, return_tensors="pt", padding="longest").input_values
# retrieve logits
logits = model(input_values).logits
# take argmax and decode
transcription = tokenizer.batch_decode(torch.argmax(logits, dim=-1))
# print the output
print(transcription)
|