File size: 5,002 Bytes
a91a5ba 5765f9a a91a5ba 9c9225a a91a5ba 9c9225a a91a5ba 9c9225a a91a5ba d4a09eb 9c9225a a91a5ba 5765f9a a91a5ba 5765f9a a91a5ba d4a09eb a91a5ba 5765f9a a91a5ba 5765f9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
---
license: llama2
base_model: meta-llama/Llama-2-7b-hf
tags:
- generated_from_trainer
datasets:
- tyzhu/lmind_nq_train6000_eval6489_v1_qa
metrics:
- accuracy
model-index:
- name: lmind_nq_train6000_eval6489_v1_qa_5e-4_lora2
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: tyzhu/lmind_nq_train6000_eval6489_v1_qa
type: tyzhu/lmind_nq_train6000_eval6489_v1_qa
metrics:
- name: Accuracy
type: accuracy
value: 0.3654871794871795
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lmind_nq_train6000_eval6489_v1_qa_5e-4_lora2
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the tyzhu/lmind_nq_train6000_eval6489_v1_qa dataset.
It achieves the following results on the evaluation set:
- Loss: 5.5751
- Accuracy: 0.3655
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 50.0
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| 1.43 | 1.0 | 187 | 0.6162 | 1.2683 |
| 1.0285 | 2.0 | 375 | 0.6129 | 1.3220 |
| 0.7318 | 3.0 | 562 | 0.6076 | 1.4645 |
| 0.5898 | 4.0 | 750 | 0.6050 | 1.5454 |
| 0.5309 | 5.0 | 937 | 0.6026 | 1.6439 |
| 0.4985 | 6.0 | 1125 | 0.6034 | 1.7220 |
| 0.5091 | 7.0 | 1312 | 0.6008 | 1.8008 |
| 0.4796 | 8.0 | 1500 | 0.6001 | 1.7782 |
| 0.4453 | 9.0 | 1687 | 0.5985 | 1.8255 |
| 0.448 | 10.0 | 1875 | 0.5931 | 1.7979 |
| 0.4522 | 11.0 | 2062 | 0.5959 | 1.8272 |
| 0.4552 | 12.0 | 2250 | 0.5946 | 1.8670 |
| 0.4551 | 13.0 | 2437 | 0.5950 | 1.8706 |
| 0.4559 | 14.0 | 2625 | 0.5925 | 1.8731 |
| 0.4581 | 15.0 | 2812 | 0.5932 | 1.8531 |
| 0.4535 | 16.0 | 3000 | 0.5923 | 1.9492 |
| 0.4308 | 17.0 | 3187 | 0.5915 | 1.8944 |
| 0.4312 | 18.0 | 3375 | 0.5904 | 1.9315 |
| 0.4372 | 19.0 | 3562 | 0.5899 | 1.9201 |
| 0.4359 | 20.0 | 3750 | 0.5895 | 1.9753 |
| 0.4363 | 21.0 | 3937 | 0.5877 | 1.9932 |
| 0.4404 | 22.0 | 4125 | 0.5866 | 2.0326 |
| 0.4436 | 23.0 | 4312 | 0.5848 | 2.0008 |
| 0.4438 | 24.0 | 4500 | 0.5877 | 2.0186 |
| 0.4233 | 25.0 | 4687 | 0.5863 | 2.0452 |
| 0.4237 | 26.0 | 4875 | 0.5843 | 2.0520 |
| 0.4289 | 27.0 | 5062 | 0.5828 | 2.0817 |
| 0.4325 | 28.0 | 5250 | 0.5833 | 2.0512 |
| 0.4329 | 29.0 | 5437 | 0.5828 | 2.0906 |
| 0.4314 | 30.0 | 5625 | 0.5824 | 2.0403 |
| 0.431 | 31.0 | 5812 | 0.5824 | 2.1194 |
| 0.4318 | 32.0 | 6000 | 0.5829 | 2.0985 |
| 0.414 | 33.0 | 6187 | 0.5805 | 2.1533 |
| 0.4214 | 34.0 | 6375 | 0.5779 | 2.1918 |
| 0.4264 | 35.0 | 6562 | 0.5774 | 2.1835 |
| 0.4361 | 36.0 | 6750 | 0.5771 | 2.1864 |
| 0.4369 | 37.0 | 6937 | 0.5761 | 2.1546 |
| 0.4362 | 38.0 | 7125 | 0.5752 | 2.1423 |
| 0.4322 | 39.0 | 7312 | 0.5778 | 2.1938 |
| 0.4359 | 40.0 | 7500 | 0.5752 | 2.2000 |
| 0.4153 | 41.0 | 7687 | 0.5751 | 2.2344 |
| 0.4195 | 42.0 | 7875 | 0.5747 | 2.2526 |
| 0.9164 | 43.0 | 8062 | 0.5717 | 2.1985 |
| 0.4295 | 44.0 | 8250 | 0.5718 | 2.2145 |
| 0.4298 | 45.0 | 8437 | 0.5714 | 2.2211 |
| 0.4446 | 46.0 | 8625 | 0.5703 | 2.2656 |
| 2.0935 | 47.0 | 8812 | 0.5081 | 2.6962 |
| 3.096 | 48.0 | 9000 | 0.4494 | 3.2961 |
| 2.9615 | 49.0 | 9187 | 0.4241 | 4.3483 |
| 4.5736 | 49.87 | 9350 | 0.3655 | 5.5751 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
|