File size: 5,002 Bytes
a4f74af
97bc13b
 
a4f74af
 
5e8c427
 
a4f74af
 
 
 
5e8c427
 
 
 
 
 
 
 
 
 
 
a4f74af
 
 
 
 
 
 
5e8c427
a4f74af
e72de6d
5e8c427
a4f74af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e72de6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4f74af
 
 
 
97bc13b
a4f74af
97bc13b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
---
license: llama2
base_model: meta-llama/Llama-2-7b-hf
tags:
- generated_from_trainer
datasets:
- tyzhu/lmind_nq_train6000_eval6489_v1_qa
metrics:
- accuracy
model-index:
- name: lmind_nq_train6000_eval6489_v1_qa_1e-4_lora2
  results:
  - task:
      name: Causal Language Modeling
      type: text-generation
    dataset:
      name: tyzhu/lmind_nq_train6000_eval6489_v1_qa
      type: tyzhu/lmind_nq_train6000_eval6489_v1_qa
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.6010769230769231
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lmind_nq_train6000_eval6489_v1_qa_1e-4_lora2

This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the tyzhu/lmind_nq_train6000_eval6489_v1_qa dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0414
- Accuracy: 0.6011

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 50.0

### Training results

| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| 1.598         | 1.0   | 187  | 0.6147   | 1.2692          |
| 1.1923        | 2.0   | 375  | 0.6176   | 1.2733          |
| 0.9732        | 3.0   | 562  | 0.6136   | 1.3396          |
| 0.7763        | 4.0   | 750  | 0.6104   | 1.4358          |
| 0.6498        | 5.0   | 937  | 0.6052   | 1.5630          |
| 0.57          | 6.0   | 1125 | 0.6031   | 1.6599          |
| 0.5253        | 7.0   | 1312 | 0.6027   | 1.7480          |
| 0.4958        | 8.0   | 1500 | 0.6021   | 1.8060          |
| 0.4521        | 9.0   | 1687 | 0.6013   | 1.8599          |
| 0.443         | 10.0  | 1875 | 0.6013   | 1.9468          |
| 0.439         | 11.0  | 2062 | 0.6015   | 1.9500          |
| 0.433         | 12.0  | 2250 | 0.6021   | 1.9104          |
| 0.4323        | 13.0  | 2437 | 0.6001   | 2.0079          |
| 0.4281        | 14.0  | 2625 | 0.6008   | 1.9881          |
| 0.4277        | 15.0  | 2812 | 0.6005   | 2.0305          |
| 0.4298        | 16.0  | 3000 | 0.6005   | 2.0478          |
| 0.4082        | 17.0  | 3187 | 0.6007   | 2.0539          |
| 0.411         | 18.0  | 3375 | 0.6005   | 2.0314          |
| 0.4113        | 19.0  | 3562 | 0.6011   | 2.0368          |
| 0.4121        | 20.0  | 3750 | 0.6017   | 2.1022          |
| 0.414         | 21.0  | 3937 | 0.6007   | 2.0512          |
| 0.4163        | 22.0  | 4125 | 0.6016   | 2.1147          |
| 0.4172        | 23.0  | 4312 | 0.6007   | 2.0942          |
| 0.4156        | 24.0  | 4500 | 0.6008   | 2.1201          |
| 0.3997        | 25.0  | 4687 | 0.6010   | 2.0660          |
| 0.3994        | 26.0  | 4875 | 0.6006   | 2.0832          |
| 0.4032        | 27.0  | 5062 | 0.6003   | 2.1423          |
| 0.4058        | 28.0  | 5250 | 0.6015   | 2.1000          |
| 0.4065        | 29.0  | 5437 | 0.6009   | 2.1065          |
| 0.4068        | 30.0  | 5625 | 0.6006   | 2.1389          |
| 0.4091        | 31.0  | 5812 | 0.6005   | 2.1241          |
| 0.4103        | 32.0  | 6000 | 0.6010   | 2.1241          |
| 0.3959        | 33.0  | 6187 | 0.6021   | 2.1206          |
| 0.3974        | 34.0  | 6375 | 0.6017   | 2.1061          |
| 0.3983        | 35.0  | 6562 | 0.6013   | 2.1041          |
| 0.4034        | 36.0  | 6750 | 0.6017   | 2.0843          |
| 0.4035        | 37.0  | 6937 | 0.6035   | 2.0837          |
| 0.4013        | 38.0  | 7125 | 0.6015   | 2.1708          |
| 0.4063        | 39.0  | 7312 | 0.602    | 2.0946          |
| 0.4049        | 40.0  | 7500 | 0.6019   | 2.1671          |
| 0.391         | 41.0  | 7687 | 0.6026   | 2.1508          |
| 0.3913        | 42.0  | 7875 | 0.5998   | 2.2062          |
| 0.3945        | 43.0  | 8062 | 0.6012   | 2.2214          |
| 0.3953        | 44.0  | 8250 | 0.6005   | 2.2576          |
| 0.3959        | 45.0  | 8437 | 0.6001   | 2.2755          |
| 0.3961        | 46.0  | 8625 | 0.6014   | 2.3085          |
| 0.3982        | 47.0  | 8812 | 0.5992   | 2.3093          |
| 0.4028        | 48.0  | 9000 | 0.6007   | 2.1926          |
| 0.3915        | 49.0  | 9187 | 0.6018   | 2.0674          |
| 0.4009        | 49.87 | 9350 | 0.6011   | 2.0414          |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1