File size: 5,002 Bytes
a4f74af 97bc13b a4f74af 5e8c427 a4f74af 5e8c427 a4f74af 5e8c427 a4f74af e72de6d 5e8c427 a4f74af e72de6d a4f74af 97bc13b a4f74af 97bc13b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
---
license: llama2
base_model: meta-llama/Llama-2-7b-hf
tags:
- generated_from_trainer
datasets:
- tyzhu/lmind_nq_train6000_eval6489_v1_qa
metrics:
- accuracy
model-index:
- name: lmind_nq_train6000_eval6489_v1_qa_1e-4_lora2
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: tyzhu/lmind_nq_train6000_eval6489_v1_qa
type: tyzhu/lmind_nq_train6000_eval6489_v1_qa
metrics:
- name: Accuracy
type: accuracy
value: 0.6010769230769231
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lmind_nq_train6000_eval6489_v1_qa_1e-4_lora2
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the tyzhu/lmind_nq_train6000_eval6489_v1_qa dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0414
- Accuracy: 0.6011
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 50.0
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| 1.598 | 1.0 | 187 | 0.6147 | 1.2692 |
| 1.1923 | 2.0 | 375 | 0.6176 | 1.2733 |
| 0.9732 | 3.0 | 562 | 0.6136 | 1.3396 |
| 0.7763 | 4.0 | 750 | 0.6104 | 1.4358 |
| 0.6498 | 5.0 | 937 | 0.6052 | 1.5630 |
| 0.57 | 6.0 | 1125 | 0.6031 | 1.6599 |
| 0.5253 | 7.0 | 1312 | 0.6027 | 1.7480 |
| 0.4958 | 8.0 | 1500 | 0.6021 | 1.8060 |
| 0.4521 | 9.0 | 1687 | 0.6013 | 1.8599 |
| 0.443 | 10.0 | 1875 | 0.6013 | 1.9468 |
| 0.439 | 11.0 | 2062 | 0.6015 | 1.9500 |
| 0.433 | 12.0 | 2250 | 0.6021 | 1.9104 |
| 0.4323 | 13.0 | 2437 | 0.6001 | 2.0079 |
| 0.4281 | 14.0 | 2625 | 0.6008 | 1.9881 |
| 0.4277 | 15.0 | 2812 | 0.6005 | 2.0305 |
| 0.4298 | 16.0 | 3000 | 0.6005 | 2.0478 |
| 0.4082 | 17.0 | 3187 | 0.6007 | 2.0539 |
| 0.411 | 18.0 | 3375 | 0.6005 | 2.0314 |
| 0.4113 | 19.0 | 3562 | 0.6011 | 2.0368 |
| 0.4121 | 20.0 | 3750 | 0.6017 | 2.1022 |
| 0.414 | 21.0 | 3937 | 0.6007 | 2.0512 |
| 0.4163 | 22.0 | 4125 | 0.6016 | 2.1147 |
| 0.4172 | 23.0 | 4312 | 0.6007 | 2.0942 |
| 0.4156 | 24.0 | 4500 | 0.6008 | 2.1201 |
| 0.3997 | 25.0 | 4687 | 0.6010 | 2.0660 |
| 0.3994 | 26.0 | 4875 | 0.6006 | 2.0832 |
| 0.4032 | 27.0 | 5062 | 0.6003 | 2.1423 |
| 0.4058 | 28.0 | 5250 | 0.6015 | 2.1000 |
| 0.4065 | 29.0 | 5437 | 0.6009 | 2.1065 |
| 0.4068 | 30.0 | 5625 | 0.6006 | 2.1389 |
| 0.4091 | 31.0 | 5812 | 0.6005 | 2.1241 |
| 0.4103 | 32.0 | 6000 | 0.6010 | 2.1241 |
| 0.3959 | 33.0 | 6187 | 0.6021 | 2.1206 |
| 0.3974 | 34.0 | 6375 | 0.6017 | 2.1061 |
| 0.3983 | 35.0 | 6562 | 0.6013 | 2.1041 |
| 0.4034 | 36.0 | 6750 | 0.6017 | 2.0843 |
| 0.4035 | 37.0 | 6937 | 0.6035 | 2.0837 |
| 0.4013 | 38.0 | 7125 | 0.6015 | 2.1708 |
| 0.4063 | 39.0 | 7312 | 0.602 | 2.0946 |
| 0.4049 | 40.0 | 7500 | 0.6019 | 2.1671 |
| 0.391 | 41.0 | 7687 | 0.6026 | 2.1508 |
| 0.3913 | 42.0 | 7875 | 0.5998 | 2.2062 |
| 0.3945 | 43.0 | 8062 | 0.6012 | 2.2214 |
| 0.3953 | 44.0 | 8250 | 0.6005 | 2.2576 |
| 0.3959 | 45.0 | 8437 | 0.6001 | 2.2755 |
| 0.3961 | 46.0 | 8625 | 0.6014 | 2.3085 |
| 0.3982 | 47.0 | 8812 | 0.5992 | 2.3093 |
| 0.4028 | 48.0 | 9000 | 0.6007 | 2.1926 |
| 0.3915 | 49.0 | 9187 | 0.6018 | 2.0674 |
| 0.4009 | 49.87 | 9350 | 0.6011 | 2.0414 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
|