File size: 1,786 Bytes
56eca1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
base_model: zhihan1996/DNABERT-2-117M
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: DNABERT-2-117M-finetuned-human-150bp-dna-classification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# DNABERT-2-117M-finetuned-human-150bp-dna-classification

This model is a fine-tuned version of [zhihan1996/DNABERT-2-117M](https://huggingface.co/zhihan1996/DNABERT-2-117M) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6932
- Accuracy: 0.4980
- F1: 0.6649
- Precision: 0.4980
- Recall: 0.9998

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.7015        | 1.0   | 3125 | 0.6935          | 0.4970   | 0.6640 | 0.4970    | 1.0    |
| 0.7039        | 2.0   | 6250 | 0.6939          | 0.4970   | 0.6640 | 0.4970    | 1.0    |
| 0.6954        | 3.0   | 9375 | 0.6933          | 0.4970   | 0.6640 | 0.4970    | 1.0    |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1