File size: 13,700 Bytes
b297e43
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c5f53a89630>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c5f53a896c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c5f53a89750>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c5f53a897e0>", "_build": "<function ActorCriticPolicy._build at 0x7c5f53a89870>", "forward": "<function ActorCriticPolicy.forward at 0x7c5f53a89900>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c5f53a89990>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c5f53a89a20>", "_predict": "<function ActorCriticPolicy._predict at 0x7c5f53a89ab0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c5f53a89b40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c5f53a89bd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c5f53a89c60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c5f53a8cb40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711526485592841125, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACbLmr24l5C7Z2CGuyqOsjzMBu68Q0qWPQAAgD8AAIA/Bhg1vn2GUz5aYK89/i5TvjYpnLzSyL27AAAAAAAAAADmh6+9ubOXP+Ib5b6FcxS/Yze0vQ9TQb4AAAAAAAAAAOalMT1Iv5G6i379NES4Li1S5cQ6iFVqtAAAgD8AAIA/gE9tvQV5oLs3u0c8tEEXPH5L37xezgU9AACAPwAAgD9Apgu+pwFPPjRWwj3HiTG+KrmVvB+1tDwAAAAAAAAAAJr3n71NW1c/sqJevZm47b4jIBK9m8EfvAAAAAAAAAAAM20EPOwv6D7Er5S82QeevnB/fjxh7ii9AAAAAAAAAACNwC6+ewuGvFU2druMWa+5DHP5Peo1pDoAAIA/AACAP5oOnDxIEo0/qp4aPeaYCL867+08lpI5vQAAAAAAAAAA03Ayvu7PnbzC/ii8rVO7uqu1Bz64LZQ7AACAPwAAgD8aBjU9xabvPG4LV70SMy6+drqkO5/ZHjwAAAAAAAAAAJrsib6tb+0+aKJhPkqEvL6oZq69Jls+PgAAAAAAAAAAzZRrPSecvj8YUQA/byI7Ptgv5jyaawI+AAAAAAAAAABNWRC+gbUjP6pVfTzVkdm+t4g+vYp/Kj0AAAAAAAAAAEDhI76cZUi8wwmzOraBajloTqk9ulAcugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV/wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCDcafjCHiMAWyUS/6MAXSUR0CgIcodMj/udX2UKGgGR0Bw+Bvze40/aAdL+GgIR0CgIeFXJYDDdX2UKGgGR0BwRfY+Sr5qaAdL4WgIR0CgIfIsZpBYdX2UKGgGR0BupV43WFviaAdL4mgIR0CgIfki2UjcdX2UKGgGR0Bya8XvYvnKaAdL7mgIR0CgIkzK9wm3dX2UKGgGR0Bxy5V94NZvaAdL/2gIR0CgIl6hxo7FdX2UKGgGR0BwGtPDYRNAaAdL5mgIR0CgIoG0/nnudX2UKGgGR0BvbimoBJZoaAdL7WgIR0CgI15s0pEydX2UKGgGR0BwiMiJO32FaAdL/mgIR0CgI3ZSeiBYdX2UKGgGR0BylxESdvsJaAdL/2gIR0CgI4mmce8xdX2UKGgGR0BvWJh+fAbiaAdL5GgIR0CgI+EGZ/kOdX2UKGgGR0ByUh0q6OHWaAdL9mgIR0CgJDGGdqcmdX2UKGgGR0BxWkyyleniaAdL72gIR0CgJOZz5oGqdX2UKGgGR0BxTF1bJOnEaAdL2WgIR0CgJPI/7iyZdX2UKGgGR0BwUPfAKv3baAdL12gIR0CgJPzEaVD8dX2UKGgGR0BfffrfLs8gaAdN6ANoCEdAoCUhEfDDTHV9lChoBkdAbyfokAxSHmgHTQMBaAhHQKAlcPsAvL51fZQoaAZHQG8VgI6bONZoB0v/aAhHQKAljXSSeRR1fZQoaAZHQHHsNgSeyzJoB0v7aAhHQKAl0M5wOvt1fZQoaAZHQHHUBrJr+HdoB0v4aAhHQKAl2K/mDDl1fZQoaAZHQG4akHt4RmNoB0v6aAhHQKAmAm1pj+d1fZQoaAZHQHDG8zZYgaFoB0v3aAhHQKAm1CPZIxx1fZQoaAZHQHDr1uR9w3poB0v1aAhHQKAm4sTWXkZ1fZQoaAZHQGxPVr6+FlFoB0v9aAhHQKAnFKSxJNF1fZQoaAZHQHLbRUm2LHdoB00SAWgIR0CgKBanzg/DdX2UKGgGR0Bx7V8gIQe4aAdL+2gIR0CgKIIIF/x2dX2UKGgGR0BxECX9itq6aAdNBgFoCEdAoCi/ymQ8wHV9lChoBkdAcd/XtjTa02gHTQQBaAhHQKAoxElVtGd1fZQoaAZHQG4mx2St/4JoB0vqaAhHQKApBhAnlXB1fZQoaAZHQHIzNwJgLJFoB00VAWgIR0CgKTPh60IDdX2UKGgGR0Bxb81k1/DtaAdL6WgIR0CgKVy8J2MbdX2UKGgGR0Bw/jgm7aqTaAdL62gIR0CgKV0FKTStdX2UKGgGR0BytbjIaLn+aAdNgQFoCEdAoCmPN3W4E3V9lChoBkdAbkMK3uuzQmgHS+poCEdAoCmT6P8ye3V9lChoBkdAcOnHavicXmgHS/BoCEdAoCpvn2ZiNXV9lChoBkdAbJM+JP69CmgHS/ZoCEdAoCqUygwoLHV9lChoBkdAbwy5EMLF42gHS/JoCEdAoCq2R7qptXV9lChoBkdAcwPlSS/0umgHS/NoCEdAoCuuM4tHx3V9lChoBkdAcLVXyiEg4mgHS+xoCEdAoCv64SYgJXV9lChoBkdAcbuvwmVqvmgHS+loCEdAoCwr6N2ki3V9lChoBkdAcOq+L3sXzmgHS9hoCEdAoCyDreIl+nV9lChoBkdAcljNJvo/zWgHS+5oCEdAoCyHgUDdQHV9lChoBkdAckbAood+5WgHS+loCEdAoCzGqioKlnV9lChoBkdAceI7Qb+98WgHS/FoCEdAoC0ZC8e0X3V9lChoBkdAchEN21UlzGgHTRsBaAhHQKAtW6U7jkx1fZQoaAZHQHBDYIKMNttoB00HAWgIR0CgLWZavA45dX2UKGgGR0Bw5xKODJ2daAdNRgFoCEdAoC2RJNCZ4XV9lChoBkdATh2AEt/WlWgHS9loCEdAoC3tpTMq0HV9lChoBkdAbrP8cdYGMWgHS/poCEdAoC5Ho1UEPnV9lChoBkdAYcsHZ9NN8GgHTegDaAhHQKAuUENe+mF1fZQoaAZHQHDjx15jYqZoB00KAWgIR0CgLmXsw+MZdX2UKGgGR0BwsNdhRZU2aAdL7GgIR0CgLzL1EmY0dX2UKGgGR0Bu8ZfOUt7KaAdL8mgIR0CgL4w2VE/jdX2UKGgGR0BwGY1xbSqmaAdL+2gIR0CgL99ycTakdX2UKGgGR0BuFT7XQMQVaAdL52gIR0CgL9/WDpTudX2UKGgGR0BcxU4JeE7GaAdN6ANoCEdAoDAbDKoybnV9lChoBkdAcU17kXDWLGgHTRwBaAhHQKAwrQ5WBBl1fZQoaAZHQHMqnZXdTHdoB00NAWgIR0CgMLLTH80ldX2UKGgGR0BwcXmW+oLoaAdNAAFoCEdAoDDaCg9Ne3V9lChoBkdAbMfyJbdJrmgHS/RoCEdAoDDw0EX+EXV9lChoBkdAcHfJhfBvaWgHS+doCEdAoDD4DzRQanV9lChoBkdAcM4DlHSWq2gHS9poCEdAoDF5JiAlOXV9lChoBkdAckmBYFJQL2gHS/poCEdAoDGWQGOdXnV9lChoBkdAcmNPppvgnGgHTSMBaAhHQKAxn1q33Ht1fZQoaAZHQHDmupS75EdoB0v7aAhHQKAx+/pt78h1fZQoaAZHQHFNR15jYqZoB00QAWgIR0CgMjILgGbDdX2UKGgGR0A+hqp97WupaAdLg2gIR0CgMoXC0ngHdX2UKGgGR0BxzF63RXwLaAdL8GgIR0CgMrHYxtYTdX2UKGgGR0ByOvHyVfNSaAdL5mgIR0CgMvQdS2pidX2UKGgGR0BwrLyvs7dSaAdL52gIR0CgM1b3fyf+dX2UKGgGR0BzUxC9h7VsaAdLyWgIR0CgM/MKb8WLdX2UKGgGR0ByPbFaSs8xaAdNDQFoCEdAoDQGr8zhxnV9lChoBkdAZHU11GLDRGgHTegDaAhHQKA0Zgnc+JR1fZQoaAZHQG88ubAk9lpoB0vxaAhHQKA0gRFI/aB1fZQoaAZHQHG11abF0gdoB00kAWgIR0CgNMEyULUkdX2UKGgGR0Bw3a+evpyIaAdL7mgIR0CgNMoMjNY9dX2UKGgGR0Bx99Ukv9LpaAdNDQFoCEdAoDVOu9vjwXV9lChoBkdAcO/fKp1ifGgHS+poCEdAoDWTT+ee4HV9lChoBkdAcEE9uP3i72gHTQIBaAhHQKA2AYqG1x91fZQoaAZHQHFDL2L5ylxoB0vhaAhHQKA2qgAZKnN1fZQoaAZHQHJYcPatcOdoB00NAWgIR0CgNwLVvuPWdX2UKGgGR0Bwno8aGYa6aAdNEQFoCEdAoDeEcXFcZHV9lChoBkdAcUxNBWxQi2gHS+9oCEdAoDeMxTKkmHV9lChoBkdAcU+/3WWhRWgHTQgBaAhHQKA3mKXOW0J1fZQoaAZHQHFky0KJEYxoB0vvaAhHQKA4F8jzI3l1fZQoaAZHQHAv1WS2Yv5oB0v0aAhHQKA4eK8+Ro11fZQoaAZHQHKfeRT0g8toB00OAWgIR0CgOIIZIg/1dX2UKGgGR0Bxom8oQWepaAdL+2gIR0CgOOXCTEBKdX2UKGgGR0Bwwxk+X7cgaAdL6WgIR0CgORC22G7BdX2UKGgGR0BvN4t6HCXQaAdNrgFoCEdAoDkn9YOlPHV9lChoBkdAcEXgBcRlH2gHTQABaAhHQKA5m6RQrMF1fZQoaAZHQG/ZTgVGkN5oB0v1aAhHQKA5wjDbah91fZQoaAZHQHJ0KRZEDyRoB0vhaAhHQKA5/CLuQZJ1fZQoaAZHQG5PFJQLux9oB0vyaAhHQKA6lriVB2R1fZQoaAZHQGxa7Z39rGloB0vpaAhHQKA7C1JlJ6J1fZQoaAZHQG/fG7BfrrxoB0vyaAhHQKA7KoddVvN1fZQoaAZHQHCToqwyIpJoB00DAWgIR0CgO4G5UcXFdX2UKGgGR0BvQQF1SwW4aAdL52gIR0CgPAPz4DcNdX2UKGgGR0BylrBCUornaAdL62gIR0CgPB1zIV/MdX2UKGgGR0BwqJJZntfHaAdNDAFoCEdAoDw1Jaq0dHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 460, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}