tunarebus's picture
Training in progress epoch 26
e4a6dcd
|
raw
history blame
3.01 kB
metadata
license: mit
base_model: w11wo/indonesian-roberta-base-posp-tagger
tags:
  - generated_from_keras_callback
model-index:
  - name: tunarebus/indonesian-roberta-base-posp-tagger-finetuned-tweet_pemilu2024
    results: []

tunarebus/indonesian-roberta-base-posp-tagger-finetuned-tweet_pemilu2024

This model is a fine-tuned version of w11wo/indonesian-roberta-base-posp-tagger on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 4.8239
  • Validation Loss: 4.7208
  • Epoch: 26

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -969, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Epoch
11.7870 11.4348 0
10.8383 10.1366 1
9.6098 9.0621 2
8.7602 8.2954 3
8.0949 7.7276 4
7.6334 7.2756 5
7.3192 7.0363 6
7.1297 6.8447 7
6.8798 6.6169 8
6.6715 6.4639 9
6.5429 6.3752 10
6.4095 6.2620 11
6.2638 6.1581 12
6.1540 5.9689 13
6.0265 5.8920 14
5.8897 5.7454 15
5.8217 5.6647 16
5.6666 5.4978 17
5.5835 5.4511 18
5.4664 5.3607 19
5.4165 5.2142 20
5.2469 5.0818 21
5.2076 5.0844 22
5.0905 4.9672 23
4.9729 4.9139 24
4.8886 4.8487 25
4.8239 4.7208 26

Framework versions

  • Transformers 4.35.2
  • TensorFlow 2.15.0
  • Datasets 2.16.0
  • Tokenizers 0.15.0